Шпаргалка: Дискретная техника
F< = X2X4X5 ( X1’X3 + X1X3’X6 )
В итоге мы получим сложное устройство, состоящее из трёх комбинационных схем, которое в общем виде можно изобразить так:
Каждую из отдельных схем в составе устройства можно изобразить отдельно.
Формирователь выхода «Равенство кодов»
Формирователь выхода «Больше»
Формирователь выхода «Меньше».
Арифметические устройства
Другой класс приборов, используемых в дискретной технике предназначен для выполнения арифметических действий с двоичными числами: сложения, вычитания, умножения, деления.
К арифметическим устройствам относятся также схемы, выполняющие специальные арифметические операции, такие как выявление чётности заданных чисел и сравнение двух чисел.
Особенность арифметических устройств состоит в том, что сигналам приписываются не логические, а арифметические значения «1» и «0» и действия над ними подчиняются законам двоичной арифметики.
Основы двоичной арифметики.
Двоичное сложение.
Сложение в DEC:
1 | 1 | 2 | 5 | 6 |
+ | + | |||
1 | 9 | 7 | 7 | |
3 | 0 | 3 | 3 | 3 |
Таблица сложения в BIN:
0+0=0 0+1=1 1+0=1 1+1=10
При сложении двух единиц получается ноль и единица переноса в более старший разряд.
Примеры двоичного сложения:
1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | |
+ | + | + | + | ||||||||
1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | ||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
Сложение в ЭВМ выполняют специальные устройства – сумматоры.
Двоичное умножение.
Таблица умножения в BIN:
0*0=0 0*1=01*0=01*1=1
Примеры умножения в двоичной системе
1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
* | * | * | * | |||||||
1 | 1 | 1 | 1 | 1 | 0 | |||||
1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
+ | + | |||||||||
1 | 1 | 0 | 1 | 1 | 1 | |||||
1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
Как видно из примеров операция умножения может быть заменена операциями сложения со сдвигом влево.
Число дополнение.
Если в двоичном числе все нули заменить на единицы, а все единицы на нули (инвертировать число), и прибавить единицу, то получится число дополнение к начальному числу.