Статья: Исторические проблемы физики. Сила, масса, инерциальная система отсчета
.
Заметим, что отсутствие или изменение любого из приведенных уравнений делает в первом случае невозможным однозначное определение силы и массы, т.к. при этом остается 3 уравнения с 4-мя неизвестными, а во втором равносильно полному изменению смысла и .
А потому, если где-нибудь равенство , например, заменяется равенством , (), то здесь следует начать с того, что неизвестно, что такое и , и то, что обозначено прежней буквой, является совершенно новым понятием.
Система отсчета
Система отсчета СО, в которой измеряются ускорения , , носит наименование инерциальной системы отсчета (ИСО).
Основным свойством ИСО является независимость ускорения тела 1 от самого этого тела (постоянство массы тела 2 при изменении тела 1), точно так же ускорение тела 2 не зависит от самого тела 2 (постоянство массы тела 1 при изменении тела 2).
Это означает, что в ИСО приращение ускорения с изменением тела 1 относится каждый раз к телу 2, соответственно с изменением тела 2 считается относящимся к телу 1.
Иными словами, с изменением тела 1 ускорение системы отсчета относительно тела 1 не изменяется (система отсчета остается прежней), точно так же с изменением тела 2 ускорение системы отсчета относительно тела 2 не меняется.
Отсюда следует, что для любой пары 1', 2' ИСО остается той же самой, что и для 1, 2.
В самом деле, произвольную пару 1', 2' можно получить из заданной пары 1, 2 путем последовательной замены вначале тела 1 на тело 1', при этом относительно 1' ИСО движется с прежним ускорением , т.е. не изменяется, а ускорение тела 2 измеряется в этой же системе отсчета; затем тела 2 на тело 2', при этом относительно 2' ИСО движется с прежним ускорением (не изменяется), а ускорение тела 1' измеряется относительно этой же системы отсчета.
В итоге, ускорения тел 1', 2' измеряются относительно той же системы отсчета, что и ускорения тел 1, 2, с точностью до любой другой системы, движущейся относительно первой без ускорения.
В ИСО ускорение тела 1 и связанной с ним системы отсчета СО1 равно , соответственно ускорение тела 2 и системы СО2 - .
В СО1 ускорение ИСО равно минус , а ускорение СО2 равно: .
Присоединим к телу 1 некоторое тело 3.
При этом ускорение СО2 в ИСО становится равным ( от добавления тела 3 не меняется).
В СО1 ускорение СО2 становится равным .
Таким образом, приращение от добавления тела 3 в ИСО и в СО1 имеет одинаковую величину и, следовательно, его можно определить измерением в СО1.
Но это приращение в ИСО однозначно определяет массу тела 3!
Заметим, что как только найдена масса хотя бы одного из тел (в данном случае - тела 3), массы всех остальных тел находятся легко, для чего следует последовательно помещать исследуемые тела на заданном расстоянии от тела 3 и измерять ускорение исследуемых тел относительно тела 3.
При этом получим: ,
где - ускорение i-го тела относительно тела 3,
- ускорение i-го тела относительно ИСО,
- ускорение тела 3 относительно ИСО.
Откуда: ,
,
где - масса i-го тела.
Вышесказанное является анализом исторически данного материала.
Правильный порядок построения феноменологической теории динамики следующий.
Начало построения
Геометрическое сравнение тел осуществляется путем сравнения их размеров; в физике тела сравнивают по их движениям,при этом характеристики движений служат характеристиками тел.
Опытным путем установлено, что тела, могущие свободно перемещаться друг относительно друга, самопроизвольно приходят в движение (взаимодействуют), причем в системе отсчета, связанной с телом 1 (СО1) тело 2 приобретает ускорение , зависящее от тела 1 (соответственно в СО2 тело 1 имеет ускорение , где ).