Статья: Исторические проблемы физики. Сила, масса, инерциальная система отсчета
Выбор ИСО, не связанной ни с одним из взаимодействующих тел, движущейся ускоренно относительно каждого из тел и притом с разными ускорениями объясняется именно тем, что при этом достигается однозначность характеристик каждого из взаимодействующих тел.
Коэффициенты
Исходные формулы при построении систем единиц динамики Ньютона следующие: ,
.
В системе единиц, предложенной В. Томпсоном, оба коэффициента принимаются равными единице:
,
при этом сам эталон массы оказывается вполне определенным (~ 15 т, при единице длины - см и единице времени - с).
Покажем, как появляются коэффициенты в формулах Ньютона в случае, если эталон массы выбирается произвольно.
Пусть, например, новый эталон массы составляет томсоновых эталонов (g имеет произвольное, отличное от единицы числовое значение).
Тогда: .
В системе единиц типа “динамической” :
.
Поскольку: , и , ,
то получаем: или , откуда .
В системе единиц типа “гравитационной” :
.
Второй закон Ньютона: в новой системе единиц:
или откуда: .
В частном случае, когда коэффициент в точности равен “гравитационной постоянной”, мы получаем собственно гравитационную и собственно динамическую системы единиц.
Если новый эталон массы, измеряемый в долях от томсонова эталона массы, сохраняет прежнюю размерность [см3/c2] , то коэффициент есть число, показывающее во сколько раз новый эталон больше или меньше томсонова эталона.
Если же новому эталону дано и новое название (например, грамм), то коэффициент приобретает размерность:
.
Итак, гравитационная и динамическая постоянные появляются вследствие произвольности выбора эталона массы при построении систем единиц измерения и не имеют собственного физического смысла.
Случай больших скоростей
Если считать установленным существование предельной относительной скорости перемещения взаимодействующих тел, при приближении к которой их ускорения стремятся к нулю по формулам:
, ( при ),
где - ускорение при относительных скоростях , много меньших скорости света , то и сила взаимодействия
, ( при ).
Вообще говоря, может означать либо по формуле , либо по формуле , поскольку .