Учебное пособие: Численные методы для решения нелинейных уравнений

Эта разновидность метода Ньютона строится путем определения производной только в одной точке приближенного решения, т. е. Последовательные приближения (4) строятся по формулам:

, (9)

где – начальное приближение к точному решению .


4.5 Метод Зейделя на основе линеаризованного уравнения

Итерационная формула для построения приближенного решения нелинейного уравнения (2) на основе линеаризованного уравнения (7) имеет вид:

4.6 Метод наискорейшего спуска

Методы спуска (см. [2]) сводят решение системы (2) к задаче нахождения минимума специально построенного функционала (функционал – отображение в R ), а именно:

,

где .

Функционал в конечном пространстве Rn можно рассматривать как функцию многих переменных .

Для нахождения точки , в которой функционал f принимает минимальное нулевое значение, выбирают точку , находят и строят итерационную формулу: с начальным приближением .

В итерационной формуле параметр hk пока не определен, выберем его таким образом, чтобы выполнилось условие: , начиная с x 0 , в предположении, что f – монотонный функционал.

Для выбора hk построим функционал, зависящий от параметра, который изменяется непрерывно: .

При h =0 имеем, что f (0) – линия уровня функционала, проходящая через точку xk . Для нахождения следующей линии уровня, более близкой к минимуму, будем выбирать h таким образом, чтобы для данного xk

Это условие минимума по h будем рассматривать как уравнение для получения hk .

Решим его приближенно, т.к. ошибка в несколько процентов обычно не влияет на скорость сходимости. Отметим кстати, что число hk всегда должно быть положительным. Для этого разложим функцию в ряд Тейлора по h в точке h =0 и возьмем только линейную часть этого разложения

.

Подстановка линейной части в условие , дает уравнение для приближенного определения

.

Решая построенное уравнение относительно h , получим:

или .

Таким образом, итерационная формула метода наискорейшего спуска имеет вид:

или , где производные вычислены в точке .

Метод наискорейшего спуска требует большего количества вычислений, чем другие методы первого порядка. Однако он обладает по сравнению с другими методами важным преимуществом, заключающемся в неизбежной сходимости процесса. При этом нужно помнить, что метод наискорейшего спуска может привести не к решению системы уравнений (2) , а к значениям аргумента, дающим относительный экстремум функции

, т.е. .


5. Сходимость методов решения нелинейных уравнений

Если метод сходится, то есть , где

– точное решение

– k-тое приближение к точному решению, то итерационный процесс следовало бы закончить по достижению заданной погрешности , где e – заданная точность (погрешность).

Однако практически это условие выполнить нельзя, так как неизвестно, тогда для окончания итерационного процесса можно воспользоваться неравенствами , или , где и – заданные величины.

К-во Просмотров: 351
Бесплатно скачать Учебное пособие: Численные методы для решения нелинейных уравнений