Учебное пособие: Численные методы для решения нелинейных уравнений
Министерство общего и профессионального образования Российской Федерации
Саратовский государственный технический университет
ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ
Методические указания
к самостоятельной работе по курсу «Высшая математика»
для студентов всех специальностей
под контролем преподавателя
Одобрено
редакционно-издательским советом
Саратовского государственного
технического университета
Саратов 2008
Введение
Данная работа ориентирована на изучение некоторых численных методов приближенного решения систем нелинейных уравнений с любым числом уравнений, составление на базе этих методов вычислительных схем алгоритмов и программ на алгоритмическом языке ФОРТРАН – IV.
Методические указания могут быть использованы как в процессе выполнения курсовой работы, так и для решения практических задач.
Задача настоящих указаний состоит в том, чтобы научить студентов решать системы нелинейных уравнений с помощью ЭВМ и затем полученные навыки использовать в курсовом и дипломном проектировании.
Предполагается, что студенты прослушали лекционный курс по основам алгоритмического языка ФОРТРАН – IV.
В качестве справочного пособия по языкам программирования может быть использована литература. [5]
Численные методы для решения нелинейных уравнений
Цель работы: изучение численных методов приближенного решения нелинейных систем уравнений, составление на базе вычислительных схем алгоритмов; программ на алгоритмическом языке ФОРТРАН – IV, приобретение практических навыков отладки и решения задач с помощью ЭВМ.
1. Определения и условные обозначения
– конечномерное линейное пространство, элементами (точками, векторами) являются группы из упорядоченных действительных чисел, например:
где – действительные числа, .
В введена операция сложения элементов, т. е. определено отображение ,
где
Оно обладает следующими свойствами:
1. ,
2. ,
3. , что (элемент называется нулевым),
4. , что (элемент называется противоположным элементу ).
В введена операция умножения элементов на действительные числа, т.е. определено отображение ,
где
Оно обладает следующими свойствами:
1. ,
--> ЧИТАТЬ ПОЛНОСТЬЮ <--