Учебное пособие: Дисперсионный анализ при помощи системы MINITAB для WINDOWS
2) оценка дисперсии «между группами», определяемыми уровнями xj :
где число степеней свободы .
3) выборочная оценка дисперсии «внутри групп», вычисляемая как средняя оценка по всем u группам:
с числом степеней свободы
Числа степеней свободы должны удовлетворять соотношению
Для того, чтобы сделать вывод о том, влияет ли на исследуемые показатели качественный фактор, сопоставляют дисперсию между группами с общей дисперсией. При этом выдвигают следующие гипотезы:
H0 : , т.е средние значения по всем столбцам равны и равны общему среднему, откуда следует, что среднеквадратическое отклонение по факторам равно среднеквадратическому отклонению по всем данным и равно нулю. Т.е. качественный фактор не оказывает влияния на исследуемый показатель.
H1 : , , т.е средние значения по всем столбцам не равны между собой и не равны общему среднему, откуда следует, что среднеквадратическое отклонение по факторам не совпадает со среднеквадратическим отклонением по всем данным. Т.е. качественный фактор оказывает существенное влияние на исследуемый показатель.
Оценивание значимости влияния фактора x выполняется по F-критерию Фишера, для чего формируется следующее F-отношение:
.
Фактор x признается незначимым, если соответствующее F-отношение оказывается меньше критического, выбранного из таблиц для принятого уровня значимости и числа степеней свободы сравниваемых дисперсий и .
Табличное значение критерия Фишера определяется дл числа степеней свободы u-1 и N-1 и вероятности ошибки .
Т.е если , то принимается нулевая гипотеза при соответствующем уровне значимости о том, что исследуемый фактор не оказывает существенного влияния на количественные данные.
Если , то нулевая гипотеза отвергается и принимается альтернативная при соответствующем уровне значимости. Исходя из этого, можно сделать вывод о том, что исследуемый фактор оказывает существенное влияние на количественные данные.
Результаты дисперсионного анализа сводятся в таблицу 2.
Таблица 2 Однофакторный дисперсионный анализ
Источник изменчивости | Сумма квадратов отклонений | Число степеней свободы | Оценка дисперсии | F – отношение |
Между группами |
| |||
Внутри групп ( ошибка e) | ||||
Общая сумма |
- число данных в столбце, u- число столбцов, m – число строк.
2.1.2. Двухфакторный дисперсионный анализ при перекрестной
классификации факторов
Часто необходимо качественно оценить значимость или незначимость влияния на целевую функцию u двух одновременно действующих факторов x1 и x2 . Такими факторами могут быть, например, форма собственности предприятия x1 ивид экономической деятельности x2 .
Модель двухфакторного дисперсионного анализа имеет вид [1-4]:
где - общее среднее, -отклонение от общего среднего для фактора x1, - отклонение от общего среднего для фактора x2, - отклонение от общего среднего для взаимодействия двух факторов, - случайная составляющая.
В этом случае общую сумму квадратов отклонений Q0 можно разбить на четыре суммы: