Учебное пособие: Иерархическое управление большими системами
Эту минимизацию можно представить как:
(4.2.9)
(4.2.10)
В этой процедуре согласования переменная wi, которая фиксирует изменения переменной yi, называется переменной согласования. Кроме того, внутренние изменения фиксируются добавлением вынужденной составляющей мат модели, эта процедура называется согласованием модели. Другими словами, сам факт представления всех промежуточных значений переменных x, u и y, так же называется метод точной декомпозиции. Следовательно, система может оперировать с теми промежуточными переменными, которые ведут к локальной оптимизации. Первый уровень задачи фиксируется точным взаимодействием переменных с первоначальной задачей оптимизации, пока определяется задача выделения согласующих переменных второго уровня.
Метод согласования цели.
Рассмотрим задачу статической оптимизации (4.2.1)-(4.2.2). В методе согласования цели удаляются все связи между подсистемами. Выходную переменную i-й подсистемы обозначим как yi, а входную – zi. Пусть все связи между подсистемами отсутствуют, т.е. . При этом условии, zi действует как случайно управляемая переменная и оптимизирует подсистему подобно x, u и y. Кроме того, задача оптимизации, рассмотренная в предыдущем параграфе, решена для уже разделенной на две подсистемы системой, где разделены взаимодействия подсистем и их целевые функции. Далее необходимо убедится, что все подсистемы вместе решают первоначальную задачу, для этого должно выполнятся правило уравновешенного взаимодействия, т.е. независимого выбора yi и zi для решения (Mesarovic и др., 1969; Schoeffler, 1971).
Опишем процедуру декомпозиции задачи на отдельные подзадачи, которые содержат задачи первого уровня. Второй уровень решения управляет первым, опираясь на правило уравновешенного взаимодействия. С точки зрения математики, это многоуровневую формулировку можно записать с помощь параметра веса , который определяет штраф системы, где не сбалансировано взаимодействие. Целевая функция примет вид:
(4.2.11)
где – вектор параметров веса (положительных и отрицательных), которые изменяют целевую функцию в зависимости от разности y-z. Введем переменную z, тогда решение системы примет вид:
(4.2.12)
(4.2.13)
Набор допустимых системных переменных определяется так:
(4.2.14)
Целевая функция минимизируется посредством S0:
(4.2.15)
Приняв за штраф и учитывая (4.2.11)-(4.2.13) , задача первого уровня формулируется как:
Подсистема 1:
(4.2.16)
(4.2.17)
Подсистема 2:
(4.2.18)
(4.2.19)
Второй уровень управляет согласованием переменной , исходя из невязки по выходу:
(4.2.20)
Из задачи второго уровня ясно, что согласующей переменной х управляют до тех пор, пока ошибка е не достигнет нуля, т.е. баланс взаимодействия поддерживается посредством целевой функции задач первого уровня (4.2.16) и (4.2.18) и через переменную , отсюда и название – согласование цели. На рис 4.4 изображено двухуровневое решение через согласование цели. Читатель может сравнить схемы 4.4 и 4.5.
Позже мы увидим, что переменную согласования а можно истолковать как вектор управления Лагранжа и задачу второго уровня можно решить через хорошо известные итеративные поисковые алгоритмы, такие как метод градиента, Ньютона и скоростного градиента.
4.3 Иерархическое управление линейными системами.
В этом разделе формулировка согласования цели для многоуровневых систем применяется к большим линейным непрерывным системам в контексте управления по разомкнутому циклу. Кроме подхода с балансом взаимодействия обсуждается так же другая схема, известная как метод наблюдения взаимодействия.
Пусть большая динамическая взаимосвязанная система представлена в виде следующего уравнения состояния:
(4.3.1)
где х и u – это векторы состояния (nxl) и управления (mxl). Принято считать, что система может быть разложена на N взаимосвязанных подсистем si, i=1,…,N, и управление состояния i-й подсистемы может быть представлено как: