Учебное пособие: Иерархическое управление большими системами
(4.3.19)
где ei – это l-й размер шага итерации, и новый компонент dl, как мы вскоре увидим, часто берется за функцию ошибка взаимодействия:
(4.3.20)
Внутреннюю переменную взаимодействия zi(*) в (4.3.20) можно считать частью управляющей переменной доступной для контроллера i, в этом случае вектор параметра a(t) является набором двойных переменных или множителем Лагранжа, который соответствует ограничениям уравнения взаимодействия (4.3.16). Фундаментальная идея, которая стоит за этим подходом должна преобразовать задачу поиска минимума первоначальной системы в более легкую задачу поиска максимума, решение которой можно получить посредством двухуровневой итеративной схемы. Которая обсуждалась выше.
Введем двойную функцию
(4.3.21)
к объекту (4.3.15), где Лагранжиан L(*) определен как:
(4.3.22)
где вектор параметра а состоит из k множителей Лагранжа. Таким образом, первоначально ограниченная (взаимодействием подсистем) оптимизационная задача превращается в неограниченную, другими словами ограничение (4.3.16) удовлетворяется через определение набора множителей Лагранжа ai, i=1,…,k. В таких случаях, когда функции ограничений выпуклые, теорема сильной двойственности Лагранжа (Geoffrion, 1971a, b; Singh, 1980) показывает, что
(4.3.23)
определяя, что минимизация J в (4.3.17) для объекта (4.3.15)-(4.3.16) эквивалентна максимуму двойной функции q(a) в (4.3.21) по параметру a. Чтобы облегчить решение этой задачи, замечено, что для определенного набора этих множителей Лагранжа а=а*, Лагранжиан можно переписать в виде:
(4.3.24)
который обнаруживает, что декомпозицию применяют к Лагранжиану таким образом, что, подлагранжиан Liсуществует для каждой подсистемы. Каждая подсистема будет стремиться минимизировать свой собственный подлагранжиан Li, как определенно в (4.3.24) для объекта (4.3.15) и используя множители Лагранжа a*, которые считаются известными функциями на первом уровне иерархии. Результат каждой такой минимизации позволит определить двойственную функцию q(a*) в (4.3.21). На втором уровне, на котором решение всех подсистем первого уровня известны, значение q(a*) будет изменено типичной неограниченной оптимизацией, например метод Ньютона, градиента или скоростного градиента. Градиентные методы используются потому, что градиент q(a) определяется:
(4.3.25)
это ошибки взаимодействия подсистем, которые известны из решений первого уровня и определяет градиент f по х. На втором уровне вектор a изменяется по формуле (4.3.19) и рисунку 4.6. Если применяется градиентный метод (с крутым склоном), вектор dl в (4.3.19) является просто l-й итеративной ошибкой взаимодействия el(t). Однако, для повышения точности вычислений определим скоростной градиент как:
(4.3.26)
где
(4.3.27)
и d0=e0. Как только вектор ошибки e(t) достигает нуля, появляется оптимальное иерархическое управление s. Ниже дана пошаговая процедура вычисления для метода согласования цели иерархического управления.
Алгоритм 4.1. Метод согласования цели.
Шаг 1. Для каждой подсистемы первого уровня, минимизируем каждый подлагранжиан Li, используя известный множитель Лагранжа a=a*, так как подсистемы линейные, может быть использовано уравнение Риккати. Сохраним решение. (Читатели не знакомые с уравнением Риккати могут прочитать раздел 4.3.2, метод прогнозирования взаимодействия).
Шаг 2. На втором уровне используется итеративный метод скоростного градиента, похожий на (4.3.26)-(4.3.27), чтобы изменить траектории a*(t) как в (4.3.19). Как только общая ошибка взаимодействия системы будет нормализована из
(4.3.28)
и будет достаточно мала, будет достигнуто оптимальное решение для системы. Здесь – размер шага интегрирования.
Два примера ниже иллюстрируют метод согласования цели или баланса взаимодействия. Первый пример, который был предложен Pearson (1971), и позже рассмотрен Singh (1980) и Jamshidi (1983), использован в изменненой форме. Второй пример показывает модель многоколенной задачи загрязнения реки (Beck, 1974; Singh, 1975). Полная оценка многоуровневых методов дана в секции 4.6, а описание нелинейных многоуровневых нелинейных систем в главе 6. Две альтернативы решения этого иерархического управления основаны на расширенных рядах Тейлора и Чебышева в разделе 4.6.
Пример 4.3.1. Рассмотрим систему 12-го порядка введенную Pearson (1971) и показанную на рис 4.7 с уравнением состояния:
(4.3.29)
и квадратичной функцией оценки:
(4.3.30)