Учебное пособие: Изучение некоторых вопросов термодинамики

или же путем пре образован ия основного термодинамического тож­дества, справедливого для всех функций, с помощью введения но­вых якобианов, равных единице.

Поскольку термодинамические функции являются функциями состояния, то правые части выражений (2.6) должны удовлетворять требованиям

(2.7)

(2.8)

(2.9)

(2.10)

Основное термодинамическое тождество можно получить из этих выражений. Действительно, из (2.7) имеем

откуда

(2.11)

Из сказанного с ле дует также, что выражения (2 .7)—(2.10) могут быть получены из основного тождества (2.11).

После того, как записаны основные уравнения, в принципе, мы могли бы, как это сделано в [4], выбрать в (2.1) три незави­симых коэффициента и с помощью этих уравнений выразить оставши­еся коэффициенты через выбранные. Однако, при решении некоторых задач, такой подход оказывается менее целесообразным, так как соответствующие выражения оказываются громоздкими. Более того, мы можем принимать во внимание то обстоятельство, что если из­вестно уравнение состояния системы, то можно легко вычислить и третий коэффициент первой строки в (2.1). Поскольку при решении большинства задач уравнение состояния системы известно, то, практически, в (2.1) можно выбрать в качестве независимых пять коэффициентов. Такой подход много упрощает решение задач.

Выразим теперь одни коэффициенты через другие с учетом вышесказанного. Во второй строке известен один коэффициент, но с помощью (2.8) найдем второй. Тогда на основании (2.8) и (2.3) найдем третий

(2.12)

В третьей строке (2.1) известен один коэффициент. Второй коэффи­циент можно получить, используя свойство якобианов

(2.13)

где было учтено выражен ие (2.10). Тогда на основании (2.4) и (2 .13) н айде м третий

(2.14)

что непосредственно вытекает также из (2.10). Первый коэффициент четвертой строки легко можно найти с помощью выражений (2.9) и (2.13), или же используя свойство якобианов

(2.15)

Из (2.7) с учетом (2.12) получим второй коэффициент

(2.16)

Наконец, последний коэффициент можно получить из (2.5) с учетом выражений (2.15) , (2.16) и (2.2)

(2.17)

Отметим, что, в дальнейшем, при рассмотрении тех или иных вопросов, будем получать общие дифференциальные соотношения, которые позволят, зная уравнения состояния системы, обобщить их для идеальных и реальных систем.

ВЫВОД УРАВНЕНИЯ АДИАБАТИЧЕСКОГО ПРОЦЕССА ДЛЯ ИДЕАЛЬНОГО И РЕАЛЬНОГО ГАЗОВ.

Процесс, протекающий при постоянной энтропии называется адиабатическим или изоэнтропным

Отме ти м, что поскольку, то Таким образом, адиабатический процесс мы свели к изотермическому, который для идеального газа можно представить в виде: Учитывая, что для данного газа , получим:

или после разделения переменных и интегрирования

К-во Просмотров: 500
Бесплатно скачать Учебное пособие: Изучение некоторых вопросов термодинамики