Учебное пособие: Математический анализ. Практикум

Интегральная сумма:


Определение. Определенным интегралом называется предел интегральной суммы.

Свойства определенного интеграла:

1. Постоянный множитель можно выносить за знак интеграла:

2. Интеграл от алгебраической суммы двух функций равен алгебраической сумме интегралов этих функций:

3. Если отрезок интегрирования разбит на части, то интеграл на всем отрезке равен сумме интегралов для каждой из возникших частей, т.е. при любых a, b, c:

4. Если на отрезке , то и


5. Пределы интегрирования можно менять местами, при этом меняется знак интеграла:

6.

7. Интеграл в точке равен 0:

8.

9. (“о среднем”) Пусть y = f(x) – функция, интегрируемая на [a,b]. Тогда , где , f(c) – среднее значение f(x) на [a,b]:

10. Формула Ньютона-Лейбница

,

где F(x) – первообразная для f(x).

3.2.2 Методы вычисления определенного интеграла.

1. Непосредственное интегрирование

Пример 35.


а)

б)

в)

К-во Просмотров: 494
Бесплатно скачать Учебное пособие: Математический анализ. Практикум