Учебное пособие: Математическое моделирование и расчет систем управления техническими объектами
Начальные условия являются следствием предыстории системы и вместе с дифференциальными уравнениями полностью определяют поведение автономной системы. В случае автономных систем с дискретным временем будем иметь однородные разностные уравнения:
.
Среда на входе системы моделируется автономными системами – генераторами воздействий или преобразователями типовых воздействий – фильтрами. Распространенными типовыми сигналами, моделирующими детерминированное воздействие, являются единичные импульсная и ступенчатая функции. Примером типового случайного воздействия является так называемый «белый шум». Среда может моделироваться динамической системой того же класса, что и сама система управления. Однако часто рассматриваются детерминированные системы со случайными воздействиями на входе.
1.3. Способы построения моделей
В зависимости от характера и объема априорной информации об объекте исследования выделяют два способа построения моделей систем управления в формах, принятых в теории управления: аналитический и экспериментальный.
Аналитический способ применяется для построения моделей объектов хорошо изученной природы. В этом случае имеется вся необходимая информация о свойствах объекта, но она представлена в другой форме. В результате идеализации физических объектов появляются структурные модели в виде схем с сосредоточенными компонентами (рис.2, а ). Типичными представителями физических систем, допускающих такое представление, являются электрические и механические объекты. На рис.2, б изображена электрическая схема; рис.2, в представляет собой пример механической поступательной системы.
Подобные схемы являются моделями, в которых информация об интересующих свойствах объекта представлена в наглядной форме с использованием графических образов, отражающих физическую природу явлений, устройство и параметры объектов. На таких моделях базируются соответствующие дисциплины, например, теоретическая электротехника и теоретическая механика. Принципиальные схемы – стационарные линейные модели с сосредоточенными компонентами.
Методы теории управления абстрагируются от конкретной природы объектов и оперируют более общими – математическими (символьными) моделями.
Аналитический способ моделирования складывается из этапа построения схемы объекта и ее дальнейшего преобразования в математическое описание требуемой формы. При этом принципиальные проблемы моделирования решаются на первом – неформальном этапе. Второй этап оказывается процедурой преобразования форм представления моделей. Это дает возможность разработать различные компьютерные программы, позволяющие автоматизировать составление уравнений по схемам.
Рассмотрим примеры составления дифференциальных уравнений электрического и механического объектов. Ограничимся классом линейных стационарных моделей.
Существуют три типа пассивных электрических двухполюсников – сопротивление R , емкость С и индуктивность L , описываемые следующими уравнениями для токов i (t ) и напряжений u (t ):
;
Активными двухполюсниками электрических схем являются источник напряжения и источник тока .
Уравнения связи двухполюсников в конкретной схеме выражаются законами Кирхгофа, представляющими собой условия непрерывности токов и равновесия напряжений:
· первый закон – сумма токов в любом узле равна нулю;
· второй закон – сумма напряжений в любом контуре равна нулю.
Рассмотрим пример электрической схемы, изображенной на рис.2, б . Пусть выходом схемы является напряжение на емкости . В соответствии с первым законом имеем:
.
Второй закон для единственного контура запишется так:
.
Выражая напряжения и через :
; ,
получим дифференциальное уравнение второго порядка
.
Рассмотрим механическую систему (рис.2, в ). Пассивными двухполюсниками механических схем являются механическое сопротивление В , масса М и упругость K , описываемые следующими уравнениями для сил f и перемещений x или скоростей v :
;
;