Учебное пособие: Методы компьютерных вычислений и их приложение к физическим задачам 2

2) погрешность исходных данных, принятых для расчета. Это неустранимая погрешность, но это погрешность возможно и необходимо оценить для выбора алгоритма расчета и точности вычислений. Как известно, ошибки эксперимента условно делят на систематические, случайные и грубые, а идентификация таких ошибок возможно при статистическом анализа результатов эксперимента.

3) погрешность метода – основана на дискретном характере любого численного алгоритма. Это значит, что вместо точного решения исходной задачи метод находит решение другой задачи, близкого в каком-то смысле (например по норме банахова пространства) к искомому. Погрешность метода – основная характеристика любого численного алгоритма. Погрешность метода должна быть в 2-5 раз меньше неустранимой погрешности.

4) погрешность округления – связана с использованием в вычислительных машинах чисел с конечной точностью представления.

Вот иллюстрация этих определений. Пусть имеется реальный маятник, совершающий затухающие колебания, начинающий движение в момент t = t0 . Требуется найти угол отклонения φ от вертикали в момент t1 . Движение маятника мы можем описать следующим дифференциальным уравнением:

где l – длина маятника, g – ускорение силы тяжести, μ – коэффициент трения.

Как только принимается такое описание задачи, решение уже приобретает неустранимую погрешность, в частности потому, что реальное трение зависит от скорости не совсем линейно (погрешность модели). Кроме того, воспроизведя реальный эксперимент, мы зададим l, g (в известной точке планеты), μ с некоторой точностью, и получим набор значений с погрешностью, которую можем оценить из анализа статистики некоторого числа однотипных опытов (погрешность исходных данных). Взятое в модели дифференциальное уравнение нельзя решить в явном виде, для его решения требуется применить какой-либо численный метод, имеющий заранее известную погрешность, которая должна быть меньше неустранимой погрешности. После совершения вычислений мы получим значения с погрешностью большей, нежели погрешность метода, так как к ней прибавится погрешность округления.

Рассмотрим правила расчета погрешности округления:

1) Сложение и вычитание приближенных чисел

Введем в рассмотрение два числа a и b, называемых приближенными, то есть это есть оценка точных значений A и B, известных с абсолютными погрешностями ±εa и ±εb . Знаки этих погрешностей нам неизвестны, следовательно для обеспечения достоверности конечного результата мы должны взять наихудший случай, когда погрешности складываются. Таким образом формулируются следующие правила:

1. Абсолютная погрешность суммы приближенных чисел равна сумме абсолютных погрешностей слагаемых.

2. Абсолютная погрешность разности приближенных чисел равна сумме абсолютных погрешностей слагаемых.

Относительной погрешностью приближенного числа a будет являться величина

По этому же правилу определим относительную погрешность суммы приближенных чисел a и b как


При этом можно показать, что

3. Относительная погрешность суммы слагаемых одного знака заключена между наименьшей и наибольшей относительными погрешностями слагаемых:

4. Для разности двух приближенных чисел одного знака величина относительной погрешности

может быть сколь угодно большой.

2) Умножение и деление приближенных чисел

Очевидно, что приближенное число

Тогда для произведения

Если пренебречь последним малым слагаемым в скобках, то можно сформулировать следующее правило:

1. Относительная погрешность произведения приближенных чисел равна сумме относительных погрешностей множителей .

Так как деление на число b равнозначно умножению на 1/b, то справедливо утверждение:

К-во Просмотров: 485
Бесплатно скачать Учебное пособие: Методы компьютерных вычислений и их приложение к физическим задачам 2