Учебное пособие: Методы компьютерных вычислений и их приложение к физическим задачам 2
В качестве текущего узла xi берется случайное число, равномерно распределенное на интервале интегрирования [a, b]. Проведя N вычислений, значение интеграла определим по следующей формуле:
Для R можно утверждать хотя бы ~
2) двумерная случайная величина – оценка площадей.
Рассматриваются две равномерно распределенных случайных величины xi и yi , которые можно рассматривать как координаты точки в двумерном пространстве. За приближенное значение интеграла принимается количества точек S, попавших под кривую y = f(x), к общему числу испытаний N, т.е.
И первый, и второй случай легко обобщаются на кратные интегралы.
5. Оценка апостериорной погрешности
Мы записывали априорные оценки главного члена погрешности в виде R0 = Ahp , (1) где A – коэффициент, зависящий от метода интегрирования и вида подинтегральной функции; h – шаг интегрирования, p – порядок метода. Такого сорта оценку можно применить не только к методам интегрирования, но и ко многим другим численным алгоритмам.
Первая формула Рунге.
Пусть w – точное значение, к которому должен прийти численный метод (мы его не знаем). Результат численного расчета дает нам величину wh такую, что
. (2)
Теперь вычислим ту же величину w с шагом kh, где константа k может быть как больше, так и меньше единицы. Коэффициент A будет одинаковый, так как вычисление осуществляется одним и тем же методом. Получаем
(3)
Приравняем правые части выражений (2) и (3) и пренебрежем бесконечно малыми величинами одинакового порядка малости.
Отсюда, учитывая (1), получим
(4) Эта формула, выражающая апостериорную оценку главного члена погрешности величины w путем двойного просчета с разным шагом, носит название первой формулы Рунге. При уменьшении шага главный член погрешности будет стремиться к полной погрешности R.
Вторая формула Рунге.
Так как модуль и знак апостериорной погрешности из формулы (4) известны, можно уточнить искомое значение
Это вторая формула Рунге. Однако теперь погрешность wcorr не определена, известно лишь, что она по модулю меньше R0 .
Алгоритм Эйткена.
Способ оценки погрешности для случая, когда порядок метода p неизвестен. Более того, алгоритм позволяет опытным путем определить и порядок метода. Для этого в третий раз вычислим значение величины w с шагом k2 h:
. (5)
Приравняем правые части выражений (5) и (3):
Отсюда: