Учебное пособие: Надёжность функционирования автоматизированных систем

Математическая логика позволяет на языке математики представить сложные логические зависимости между состояниями системы и её комплектующих частей.

Теория вероятностей, математическая статистика и теория вероятностных процессов дают возможность учитывать случайный характер возникающих в системе событий и процессов, формировать математические основы теории надёжности.

Теория графов, исследования операций, теория информации, техническая диагностика, теория моделирования, основы проектирования систем и технологических процессов - такие научные дисциплины, без которых невозможно было бы развитие науки о надёжности. Они позволяют обоснованно решать задачи надёжности.

Основные направления развития теории надёжности следующие.

1. Развитие математических основ теории надёжности. Обобщение статистических материалов об отказах и разработка рекомендаций по повышению надёжности объектов вызвали необходимость определять математические закономерности, которым подчиняются отказы, а также разрабатывать методы количественного измерения надёжности и инженерные расчёты её показателей. В результате сформировалась математическая теория надёжности.

2. Развитие методов сбора и обработки статистических данных о надёжности. Обработка статистических материалов в области надёжности потребовала развития существующих методов и привела к накоплению большой статистической информации о надёжности. Возникли статистические характеристики надёжности и закономерности отказов. Работы в этом направлении послужили основой формирования статистической теории надёжности.

3. Развитие физической теории надёжности. Наука о надёжности не могла и не может развиваться без исследования физико - химических процессов. Поэтому большое внимание уделяется изучению физических причин отказов, влиянию старения и прочности материалов на надёжность, разнообразных внешних и внутренних воздействий на работоспособность объектов. Совокупность работ в области исследования физико - химических процессов, обуславливающих надёжность объектов, послужила основой физической теории надёжности.

В конкретных областях техники разрабатывались и продолжают разрабатываться прикладные вопросы надёжности, вопросы обеспечения данной конкретной техники (полупроводниковые приборы, судовые установки, транспортные машины, вычислительная техника, авиация и т.д.). При этом решается также вопрос о наиболее рациональном использовании общей теории надёжности в конкретной области техники и ведётся разработка новых приложений, методов и приёмов, отражающих специфику данного вида техники. Так возникли прикладные теории надёжности, в том числе прикладная теория надёжности АСУ.


1. НАДЁЖНОСТЬ НЕРЕМОНТИРУЕМЫХ ИЗДЕЛИЙ

1.1 Проблемы надёжности

Проблема надёжности возникла по следующим причинам:

1) Резкое усложнение изделий, электронной аппаратуры, большое количество элементов, входящих в состав изделия. Чем сложнее и точнее аппаратура, тем менее она надёжна;

2) Рост сложности системы превышает рост надёжности элементов в этой системе;

3) Функция, которую выполняет изделие, бывает очень ответственной и отказ изделия может дорого обойтись.

Пример: отказ аппаратуры управления производственным процессом может привести не только к прекращению изготовления продукции, но может вызвать серьёзную аварию.

К каким последствиям могут привести отказы электронной аппаратуры военного назначения, учитывая огромную разрушительную силу ядерного оружия.

4) Исключение человека - оператора из процесса управления. Это обусловлено скоротечностью процессов либо вредными условиями труда. Важным фактором безотказности аппаратуры является способность человека принимать решения при управлении сложным объектом.

5) Сложность условий, в которых осуществляется эксплуатация аппаратуры.

Академик Берг: “Не одно достижение науки и техники, сколь бы эффективно оно не было, не может быть полноценно использовано, если его реализация будет зависеть от “капризов” малонадёжной аппаратуры”.


1.2 Факторы, влияющие на надёжность электронной аппаратуры, на надёжность изделия

При анализе надёжности целесообразно рассматривать три этапа в создании аппаратуры или изделия.

1. Проектирование

2. Изготовление

3. Эксплуатация

1.2.1 Факторы, влияющие на надёжность при проектировании

1. Количество и качество элементов в системе оказывает влияние на надёжность. Увеличение количества используемых элементов приводит к резкому ухудшению надёжности аппаратуры. К ухудшению надёжности приводит применение менее надёжных элементов.

2. Режим работы элементов. Самые надёжные элементы, работающие в тяжёлом, не предусмотренном для их применения режиме, могут стать источником частых отказов. Для каждого элемента устанавливаются технические условия на режим работы элемента. Необходимо правильно выбрать режимы работы элементов.

3. Применение стандартных и унифицированных элементов резко повышает надёжность системы. Технология производства этих элементов отработана, надёжность их известна.

4. Конструктор должен предусмотреть хороший доступ к блокам, элементам аппаратуры для осмотра, ремонта; предусмотреть сигнализацию об отказе того или иного элемента.


1.2.2 Факторы, влияющие на надёжность в процессе изготовления

1. Качество материалов. Необходим хороший входной контроль материалов и комплектующих изделий, поступающих от других предприятий.

2. Качество хранения материалов и комплектующих изделий.

3. Чистота рабочих мест, оборудования, рабочего помещения.

4. Соблюдение технологии изготовления и сборки: термообработка, антикоррозийные покрытия и т.п.

1.2.3 Факторы влияющие на надёжность в процессе эксплуатации

К-во Просмотров: 371
Бесплатно скачать Учебное пособие: Надёжность функционирования автоматизированных систем