Учебное пособие: Теория вероятностей и математическая статистика

8. С.в. Х - имеет равномерное распределение на отрезке [2,6]. Найти функцию распределения и плотность распределения вероятности, числовые характеристики Х и вероятность Р(Х(3,4)).

9. Шкала лабораторных весов имеет цену деления 1 грамм. При взвешивании вес округляется в ближайшую сторону. Какова вероятность, что абсолютная ошибка определения массы: а) будет заключена между DX и 2DX? б) будет менее 0,2 грамма.

10.Минутная стрелка часов перемещается скачком в конце каждой минуты. Найти вероятность того, что в настоящий момент часы покажут время, которое отличается от истинного не более чем на 15 секунд.

ЗАДАНИЕ 8. НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ. ПРАВИЛО 3-Х СИГМ

1. Автомат штампует детали. Контролируемый размер является случайной величиной Х, имеющей нормальное распределение с параметром а=50, =0,02. Выписать функцию распределения и плотность распределения с.в. Х. Деталь считается годной, если ее размеры попадают в интервал от 49,96 до 50,04. Найдите процент бракованных деталей.

2. Жирность молока коров в область (в %) есть нормально распределенная с.в. с математическим ожиданием равным 4% и среднеквадратическим отклонением 0,03. Вычислить вероятность того, что в наудачу взятой пробе жирность молока будет: а) более 4%; б) менее 4%; в) от 3,95 до 4,05%. Выписать плотность распределения данной с.в.

3. Продолжительность работы прибора есть нормально распределенная с.в. с параметрами а=1000 ч. и 2 =900 ч. Найти вероятность того, что продолжительность горения лампы составляет: а) более 1000 ч. б) менее 1000 ч. в) от 940 ч. до 1060 ч. Выписать плотность распределения данной с.в. и изобразить решение п. в) на графике плотности.

4. Рост людей призывного возраста предполагается нормально распределенным со средним 170 см. и средним квадратическим отклонением 7 см. Определить процент лиц, имеющих рост а) более 170 см. б) менее 170 см. в) от 170 до 180 см. Решение п. в) изобразить схематично на графике плотности распределения.

5. Изменение индекса ценной бумаги на фондовой бирже может быть смоделировано как нормально распределенная случайная величина с параметрами а=1 и 2 =0,01. Найти вероятность того, что на следующих торгах индекс ценной бумаги будет а) более 1 б) менее 1 в) от 0,98 до 1,02. Выписать функцию распределения и плотность распределения данной с.в.

6. Средний процент выполнения плана предприятиями отрасли составляет 103%, среднее квадратическое отклонение 2%. Предполагая, что выполнение плана предприятиями подчиняется нормальному закону, определить процент предприятий, выполняющих план: а) более 103% б) менее 103% в) от 99% до 107%. Решение п. в) схематично изобразить на графике плотности распределения.

7. Диаметр деталей, изготовленных цехом, является с.в., имеющей нормальное распределение с математическим ожиданием равным а=5 см. и дисперсией 0,0004. В каких границах можно практически гарантировать диаметр деталей. Если данная с.в. выйдет за эти границы, то объясните ситуацию. Подсчитайте процент деталей, заключенных в пределах от 4,96 до 5,04.

8. На автомате изготовляют заклепки. Диаметр заклепок можно считать нормально распределенной с.в. со средним 3 мм и среднем квадратическим отклонением 0,1. Какие размеры диаметра головок заклепки можно гарантировать с вероятностью: а) 0,95; б) 0,9973.

9. Контролируемый размер детали представляет собой нормально распределенную с.в. с параметрами МХ=150 мм (Х)=2 мм. а) Найти вероятность брака, если допустимые размеры должны быть 150±3 мм. б) Какую точность контролируемого размера можно гарантировать с вероятностью 0,97. в) За какие границы практически не выйдет контролируемый размер детали. Если он выйдет за эти границы, то постарайтесь объяснить ситуацию.

10.Вес отдельной коробки конфет представляет собой нормально распределенную с.в. со средним 500 гр. и средним квадратическим отклонением 10 гр. а) Найти процент коробок, вес которых более 500 гр. б) Найти процент коробок, вес которых заключен в пределах 500±15 гр.


ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

ЗАДАНИЕ 9. ПЕРВИЧНАЯ ОБРАБОТКА ДАННЫХ ПО НЕСГРУППИРОВАННЫМ НАБЛЮДЕНИЯМ

1-10. В следующих задачах дана выборка. Требуется:

а) Построить статистический ряд распределения частот и полигон частот;

б) Вариационный ряд;

в) Найти "хорошие" оценки математического ожидания и дисперсии;

г) Найти выборочные моду, медиану, коэффициент вариации, коэффициент асимметрии.

1. 0,1,1,3,1,2,2,0,1,0.

2. 1,5,1,2,1,3,2,3,1,2.

3. 10,8,10,11,9,10,8,9,10,10.

4. 50,45,45,55,45,50,40,45,50,45.

5. 20,22,20,24,20,22,20,20,25,22.

6. -1,1,0,1,1,2,-1,1,2,1.

7. 9,5,5,7,5,7,3,5,9,7.

8. 15,12,8,15,10,15,8,12,15,12.

К-во Просмотров: 1039
Бесплатно скачать Учебное пособие: Теория вероятностей и математическая статистика