Учебное пособие: Цилиндр

Найдите расстояние от этого сечения до оси.

Дано: СК = h = 12см, R = ОК = ОМ = 10см.

Найти: ОЕ.

М

В


С

Решение:

СК равна высоте, то есть СК = 12 см. Так как в сечении получился квадрат, то КМ = СК = 12см.

ОК − радиус основания, ОК = 10см.

Треугольник ОКЕ – прямоугольный, где ОК = 10см, КЕ = 6см.

По теореме Пифагора:

ОЕ =

Ответ: ОЕ = 8см.

Задача 5.

В цилиндр наклонно вписан квадрат так, что все его вершины лежат на окружностях основания. Найдите сторону квадрата, если высота цилиндра равна 2см, а радиус основания равен 7см.

Дано: цилиндр, h = 2см, R – 7см, АВСD − наклонно вписанный квадрат.

В
?????: ??.
А

В1
D1
А1
С
D

Решение:

Достроим квадрат АВСD до прямого прямоугольного параллелограмма АВС1 D1 А1 В1 СD с диагональным сечением АВСD.

Угол АВС1 = 90°. Так как вписанный в окружность угол, стороны которого проходят через две данные точки окружности, равен половине угла между радиусами, проходившими в эти точки, или дополняет половину этого угла до 180°, то АС1 есть диаметр окружности верхнего основания цилиндра.

Рассмотрим прямоугольный треугольник СС1 А1 − катет СС1 , есть образующая цилиндра и СС1 = 2АС, катет АС1 есть диаметр цилиндра и АС1 = 14. По теореме Пифагора АС = (см).

Из прямоугольного равнобедренного треугольника АВС по теореме Пифагора сторона квадрата АВ = см.

Ответ: АВ = 10 см.

Задача 6.

Объем цилиндра 120 см2 , его высота 3,6 см.

Найти радиус цилиндра.

Дано: V = 120 см2 , h = 3,6 см.

Найти: r

r
h

Решение:

Ответ: r = 3,3.

Задача 7.

Осевым сечением цилиндра является квадрат, диагональ которого равна см.

Найдите площадь поверхности цилиндра.

Дано: цилиндр, АВСD − осевое сечение, АВ = АD, ВD = см.

Найти: Sпов.цил.

С
В
D
А

К-во Просмотров: 656
Бесплатно скачать Учебное пособие: Цилиндр