Учебное пособие: Выборочный метод
По заданной доверительной вероятности
Р = 1 – α = 2Ф (zα ) = 0.95
находим по таблице интегральной функции Лапласа соответствующее значение zα =1,96. Применяем формулу (1.9.9):
Таким образом, доверительный интервал для генеральном доли р:
0,20-0,06<p<0,20+0,06, или 0,14<p<0,26
Пример 1.9.2. По результатам той же выборки определить вероятность того, что ошибка выборки не превысит 0,03.
Имеем:
Отсюда:
По таблице интегральной функции Лапласа находим соответствующую доверительную вероятность Р = 2Ф ( z а )=0,71.
Пример 1.9.3. До проведения выборки необходимо ответить на вопрос: какой объем выборки обеспечит с вероятностью0,95 ошибку выборзки не более, чем 0,02?
Применяем формулу (1.9.11):
Следует заметить, что требуемые надежность и точность может обеспечить в нашей задаче и выборка меньшего объема.Если до проведения выборкиу нас есть приближенная оценка хотя бы максимальной величины р* ,то мыможем применить формулу (1.9.10) и получить меньшее значение необходимого объема выборки п.
В случае безвозвратной выборки случайная величина р*, как доказываетсяв теории вероятностей, имеет так называемое гипергеометрическое распределение. Ее математическое ожидание,как и в случае возвратнойвыборки, равно генеральной доле: М (р* )=р, а среднее квадратическоеотклонение вычисляется но формуле:
(1.9.12)
где N — объем генеральной совокупности
Придостаточно большом объеме выборки гипергеометрическоераспределение также хорошо аппроксимируетсянормальным распределением с указанными параметрами M (p *) и σ (p *), поэтому дальнейший ход решения задач аналогичен рассмотренному выше случаю возвратной выборки.
Формула для предельной выборки принимает вид
(1.9.13)
При решении задач III типа из (1.9.13) получаем:
(1.9.14)
Соответственно изменится и формула для nmax :
(1.9.15)
Если объем выборочной совокупности n составляет незначительную долю по отношению к объему генеральной совокупности N , то величина в формуле (1.9.12) ближе к 1, можно пренебречь различием формул (1.9.9) и (1.9.13) и пользоваться более простыми соотношениями для возвратной выборки, даже если фактически выборка производится как безвозвратная.
В заключение раздела необходимо отметить что в статистике используется понятие средней ошибки выборки , которая определяется как среднее квадратическое отклонение соответствующей выборочной характеристики. Нетрудно видеть, что формула для средней ошибки выборки является частным случаем формулы предельной ошибки выборки при z=1.
3.4 Точечные оценки для средней и дисперсии генеральной совокупности