Учебное пособие: Выборочный метод
Поскольку n 3 ≈ n 2 , то необходимый объем выборки устанавливается 21 человек.
Еще раз отметим, что рассмотренные выше схемы решения задач для малых выборок справедливы только при предположении нормального характера генерального распределения. При отсутствии такого предположения распределения неизвестно, и выборочную среднюю можно использовать лишь как точечную оценку генеральной средней без оценки точности .приближенного равенства , т. е. без расчета доверительного интервала.
3.5.3. Безвозвратная выборка
В случае безвозвратной выборки формула для среднего квадратического отклонения выборочной средней, согласно (2.21), примет вид:
(1.9.29)
Если генеральное среднее квадратическое отклонение σнеизвестно (наиболее реальная ситуация), то мы заменяем его точечной оценкой s', которая рассчитывается по формуле (1.9.20). В результате получим:
(1.9.30)
(. s — обычное «исправленное» среднее квадратическое отклонение
)
Во всем остальном ход решения задач как для случая больших выборок, так и для случая малых выборок остается прежним.
Корректирующий множитель при малой величине (например, для 1 или 5% выборок) близок к 1, и поэтому расчеты могут производиться как для возвратной выборки.