Учебное пособие: Выборочный метод
Возвратная выборка объема n может рассматриваться как совокупность n независимых случайных величин Xj , имеющих одно и то же распределение, совпадающее с генеральным, для которых, следовательно:
M (Xj ) = ; D (Xj )= σ2
Для точечной оценки генеральной средней естественно использовать статистику ¾ среднюю. Используя свойства математического ожидания и дисперсии, получим:
(1.9.16)
(1.9.17)
Нетрудно видеть, что статистика θ ¾X * является состоятельной, несмещенной и эффективной оценкой параметра .
Для точечной оценки генеральной дисперсии воспользуемся статистикой — выборочной дисперсией. Однако при ближайшем рассмотрении оказывается, что
(1.9.18)
Таким образом, статистика θ = D * является смещеннойоценкой для генеральной дисперсии σ2 . Однако смещенность легко устраняется путем введения корректирующего множителя .Статистика
(1.9.19)
(так называемая «исправленная» выборочная дисперсия) является несмещенной оценкой генеральной дисперсии σ2 и используется для ее точечной оценки.
Заметим, что при большом п отношение и потому значение s2 ≈D *
В случае безвозвратной выборки можно показать, что точечная оценка средней будет той же (т. е. *), а точечная оценка дисперсии должна быть заменена на:
(1.9.20)
где N — объем генеральной совокупности
В случае безвозвратной выборки изменится и выражение для D (*), которое потребуется для построения доверительного интервала при оценке средней:
(1.9.21)
При относительно небольшом объеме выборки и
3.5 Интервальные оценки средней
При изложении данного вопроса будем различать случаи больших и малых выборок. При этом оба случая сначала рассмотрим в более простой, с теоретической точки зрения, ситуации возвратной (повторной) выборки.
3.5.1 Большая выборка
Если объем выборки достаточно большой (практически, начиная с п > 20—30), то распределение выборочной средней , согласно центральной предельной теореме, независимо от характера генерального распределения приближается к нормальному распределению с параметрами
М ()= и )
где — генеральная средняя,
σ— генеральное среднее квадратическое отклонение,
п — объем выборки.
Таким образом, величина
распределена по стандартному нормальному закону (с математическим ожиданием M (z ) = 0и средним квадратическим отклонением σ( z ) = 1).