2. Даны координаты вершин четырехугольника  ABC D: A (-6; 1), B (0; 5), С (6; -4),D (0; -8).Докажите, что ABCD – прямоугольник, и найдите координаты точки пересечения его диагоналей.

2. Даны координаты вершин четырехугольника  ABC D: A (-6; 1), B (0; 5), С (6; -4),D (0; -8). Докажите, что ABCD – прямоугольник, и найдите координаты точки пересечения его диагоналей.
Гость
Ответ(ы) на вопрос:
Гость
1)Прямоугольник это параллелограмм.У параллелограмма стороны попарно равны и параллельны. Т.е. их векторы равны (вектор AB=векторуDC). Почему не CD?Потому что они должны быть сонаправлены.Не, ну можно конечно взять и CD, но не пугайтесь, если выйдут векторы с противоположными знаками. Итак, вектор AB={0+6; 5-1}={6;4}                     DC={0-6; -8+4}={-6;-4} не порядок...тогда фигура должна быть не ABCD. а ABDC...уточните это у учителя но меня это не остановит!Извините, что так много пишу. AB=CD все-таки и ABCD у нас -параллелограмм. У прямоугольника диагонали равны. т.е. AC=DB это отрезки, не векторы АС=V(6+6)^2+(-4-1)^2 (V-корень квадратный) т.е. АС=13 BD=V0+(-8-5)^2 BD=13 AC=BD что и требовалось доказать. 2)Пересечение диагоналей, это их середина в прямоугольнике ⇒ вектор АО={6;-2,5} (вектор AC/2) т.е х+6=6⇒х=0; у-1=-2,5⇒у=-1.5 (это я представила вектор как разность координат А и О(х;у)) О(0;-1,5)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы