Через концы хорды, длина которой равна 30, проведены две касательные до пересечения в точке А. Найти расстояние от точки А  до хорды, если радиус окружности равен 17

Через концы хорды, длина которой равна 30, проведены две касательные до пересечения в точке А. Найти расстояние от точки А  до хорды, если радиус окружности равен 17
Гость
Ответ(ы) на вопрос:
Гость
Если ВВ1 - хорда, а С -её середина, то прямоугольный треугольник ОСВ (и равный ему треугольник ОСВ1) - с катетом ВС= 30/2 = 15 и гипотенузой  OB = 17, поэтому второй катет СО = 8; (Пифагорова тройка 8,15,17).  Треугольник АВC - прямоугольный и подобный треугольнику ОВС - у них равные острые углы - например, угол ВАС равен углу СВО, потому что у этих углов стороны попарно перпендикулярны. Поэтому АС/ВС = ВС/СО; AC = 15^2/8 = 225/8;   Для любителей формул можно заметить, что ВС - высота к гипотенузе АО в прямоугольном треугольнике АВО, и она делит гипотенузу на отрезки АС и СО. Поэтому ВС^2 = AC*CO Я просто предпочитаю не пользоваться формулами - всегда есть риск применить готовое соотношение не там, где надо.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы