Доказать тождество: cos^6a+sin^6a=1/8(5+3cos4a)
Доказать тождество: cos^6a+sin^6a=1/8(5+3cos4a)
Ответ(ы) на вопрос:
cos^6a+sin^6a=(cos^2a+sin^2a)*(cos^4a+sin^4a-cos^2asin^2a)= =(cos^2a-sin^2a)^2+cos^2asin^2a=(cos2a)^2+1/4(sin2a)^2= =cos4a+5/4sin^2(2a)=cos4a+5/4(1/2(1-cos4a))=cos4a+5/8-5/8cos4a= =1/8(5+3cos4a)
Не нашли ответ?
Похожие вопросы