Докажите, что функция f (x)=x^3+x на множестве действительных чисел возрастает
Докажите, что функция f (x)=x^3+x на множестве действительных чисел возрастает
Ответ(ы) на вопрос:
F(x)=x³+x
D=(-∞;∞)
f'(x)=(x³+x)'=2x²+1
функция y=f(x) возрастает на на некотором промежутке области определения, если ее производная на этом промежутке положительна.
f'(x)>0. 2x²+1>0 2x²>-1. x- любое число
Не нашли ответ?
Похожие вопросы