Две прямые перекаются в точке С . Найдите абсциссу точке С

Две прямые перекаются в точке С . Найдите абсциссу точке С
Гость
Ответ(ы) на вопрос:
Гость
Пусть А(0;ув) В(хв;0) С(х;у) 1. докажем, что хотя бы одна прямая из данных пересекает оси координат. 1) если оси не пересекаются, значит прямая ей параллельна, но если прямая параллельна одной оси, то она пересекаем другую -> данные прямые пересекают оси координат. 2. пусть координаты точки С - это (х;у) 3. длина отрезка АС, где А точка пересечения прямой а с осью ОУ АС=квадратный корень( (х-0)^2+(у-ув)^2 ) = корень ( х^2+у^2-2*у*ув+ув^2) -> х= АС - корень из (у^2-2*у*ув+ув^2) 4. Длина отрезка ВС, где В точка пересечения прямой в с осью ОХ ВС=квадратный корень( (х-хв)^2+(у-0)^2) = корень ( х^2-2*х*хв+хв^2+у^2) -> х= ВС + корень из (2*х*хв+хв^2+у^2) 5. х= АС-ВС-корень из (у^2-2*у*ув+ув^2)-корень из (2*х*хв+хв^2+у^2)= АС-ВС- корень (2*у^2-2*у*ув+2*х*хв+хв^2+ув^2) = корень (х^2+у^2-2*у*ув+ув^2-х^2-2*х*хв+хв^2+у^2-2*у^2-2*у*ув+2*х*хв+хв^2+ув^2) = корень ( 2*ув^2+2*хв^2) = корень ( 2*(ув+хв)^2) = (ув+хв) квадратный корень из 2 Решение было выведено через формулу поиска длины отрезка по координатом его начала и конца.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы