Катеты прям. треуг. =40 и 42см.на сколько радиус описанной окружности больше радиуса вписанной?

Катеты прям. треуг. =40 и 42см.на сколько радиус описанной окружности больше радиуса вписанной?
Гость
Ответ(ы) на вопрос:
Гость
1) радиус описанной окружности определяется по формуле             R=0,5√(a²+b²) тогда             R=0,5√1600+ 1764)=0,5√ 3364= 0,5*2√841=√841=29   2) Радиус вписанной окружности определяется по формуле:              r=√((p-a)(p-b)(p-c))/p), где p=0,5*(a+b+c)              с=√(a²+b²)=√(1600+1764)=√3364=58              p=0,5((40+42+58)=70   тогда             r=√((70-40)(70-42)(70-58))/70)=√((30*28*12)/70)=√144=12 тоесть радиус описанной окружности больше от вписанной на            29-12=17
Не нашли ответ?
Ответить на вопрос
Похожие вопросы