Хелп Через точку O пересечения продолжений боковых сторон трапеции ABCD проведена прямая, параллельная основаниям AD и BC. Эта прямая пересекает продлжения диагоналей DB и AC трапеции в точках M и N соответственно. Найдите площ...

Хелп Через точку O пересечения продолжений боковых сторон трапеции ABCD проведена прямая, параллельная основаниям AD и BC. Эта прямая пересекает продлжения диагоналей DB и AC трапеции в точках M и N соответственно. Найдите площадь трапеции AMND, если площадь треугольника ВОС равна 3, а площадь трапеции ABCD равна 45.  помогите как решить завтра
Гость
Ответ(ы) на вопрос:
Гость
общая площадь ABCDO=3+45=48 т.к.ON gfhfkktkmyj AD то угол AOD=ODN, то DN получается параллельно AO, а AD по условию параллельно ON, то площадь DON=  площадь ABCDO=3+45=48 аналогично AMO=48 и вся большая трапеция =48*3=144 
Гость
Чего то там предыдущий товарищ намудрил, с чего это угол  уAOD=ODN? это совсем не так.   Действительно, площадь треугольника AOD 48. Так как треугольники AOD и BOC подобны, то их соответственные стороны отностятся, как √(3/48) = 1/4, то есть OB/OA = 1/4; Поскольку AD II BC II MN, то отрезки всех секущих пропорциональны, то есть MB/BD = 1/4; NC/AC = 1/4, откуда MD/BD = AN/AC = 4/3; площади трапеций  MNDA и BCDA относятся, как (4/3)^2 (площадь трапеции можно вычислить, как S = d1*d2*sin(Ф)/2, где d1 и d1 - диагонали, угол одинаковый, и диагонали относятся, как 4/3...) Получается 45*(4/3)^2 =  80;  
Не нашли ответ?
Ответить на вопрос
Похожие вопросы