Найдите наибольшее и наименьшее значение функции f(x)=x^3-3x^2-9x+35 на отрезке [-4;4]

Найдите наибольшее и наименьшее значение функции f(x)=x^3-3x^2-9x+35 на отрезке [-4;4]
Гость
Ответ(ы) на вопрос:
Гость
Б-же, неужели так сложно в поисковике найти способ и по примеру сделать? ладно. Находим производную: f'(x) = 3x^2 - 6x - 9 Приравниваем все это к нулю и находим корни: 3x^2 - 6x - 9 = 0 D = 3^2 + 3*9 = 36 Мамкиным математикам - это половинный дискриминант, так что не надо писать, что ошибка. x1,2 = (-3+-6)/3 x1 = 1; x2 = -3 Подставляем эти числа в производную: f'(1)=-12 - мин f'(-3) = 36 - макс Если в чем-то не прав - звыняй.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы