Найдите все значения параметра a, при каждом из которых система уравнений x^2+y^2=1; x+y=a имеет единственное решение.   Ответ плюс минус корень из двух. Буду признательно за помощь в том, как подобные задания решать.

Найдите все значения параметра a, при каждом из которых система уравнений x^2+y^2=1; x+y=a имеет единственное решение.   Ответ плюс минус корень из двух. Буду признательно за помощь в том, как подобные задания решать.
Гость
Ответ(ы) на вопрос:
Гость
x^2 + y^2 = 1             x^2 + (a-x)^2 = 1      2x^2  - 2ax + (a^2-1) = 0 y = a-x                      y = a-x                      y = a-x   D = 4a^2 - 8(a^2 -1) = 8 - 4a^2 = 4(2-a^2) Если D<0, решений нет. Если D>0, то два решения. Если D = 0, то единственное решение, что и требуется в задаче. Приравняем дискриминант 0: 4(a^2 - 2) = 0 a1 = кор2; a2 = - кор2.   Тогда х = 2а/4 = а/2,  у = а - а/2 = а/2. Ответ: - кор2; кор2. 
Не нашли ответ?
Ответить на вопрос
Похожие вопросы