Во сколько раз уменьшится площадь поверхности правильной треугольной пирамиды, если все ее ребра уменьшить в 6 раз?

Во сколько раз уменьшится площадь поверхности правильной треугольной пирамиды, если все ее ребра уменьшить в 6 раз?
Гость
Ответ(ы) на вопрос:
Гость
Может быть, можно решить проще, но попробуем через формулу Герона:S = v(p(p-a)(p-b)(p-c)), где S - площадь треугольника, p - его полупериметр,  v - корень, a,b,c - стороны треугольника. При уменьшении сторон в шесть раз полупериметр тоже уменьшится в шесть раз:S1 = v(p/6*(p-a)/6*(p-b)/6*(p-c)/6)=S/36. То есть площадь треугольника уменьшится в 36 раз. Площадь поверхности пирамиды равна сумме четырёх площадей треугольников и соответственно тоже уменьшится в 36 раз
Не нашли ответ?
Ответить на вопрос
Похожие вопросы