Дипломная работа: Дифференциальная геометрия торсов в пространстве 1R4 с псевдоевклидовой касательной плоскостью

Скалярный квадрат вектора определяется по формуле:

. (2)

При этом вектора репера будут иметь следующие скалярные квадраты:

(3)

Определение 1.1. Длиной вектора в пространстве Минковского будем называть число:

Определение 1.2. Векторы пространства Минковского называются ортогональными, если их скалярное произведение равно нулю.

Таким образом, в пространстве 1R4 будут существовать векторы трех типов.

1. Векторы действительной длины при .

Например, (2,1,1,2).

2. Векторы мнимой длины при .

Например, (3,1,1,1).

3. Ненулевые векторы нулевой длины при .

Например, (6,2,4,4).

Такие векторы называются изотропными. Они лежат на изотропном конусе.


x1

x2

Рис. 1.1. Изотропный конус

Уравнение конуса будет иметь вид

-(x0 )2 +(x1 )2 +(x2 )2 +(x3 )2 =0

Такой конус также называют световым.

Расстояние ρ(М,N) между точками М(x1,x2,x3,x4) и N(у1,у2,у3,у4) в пространстве 1R4 определяется как длина вектора (у1- x1, у2- x2, у3- x3, у4- x4) и равна

ρ(М,N)= (5)

В пространстве 1R4 существует три типа прямых.

1. Прямые действительной длины (R1 ), направляющий вектор которых является вектором действительной длины. Например, е = [].

2. Прямые мнимой длины (1R1 ), направляющий вектор которых является вектором мнимой длины. Например, е = [].

3. Изотропные прямые (), направляющий вектор которых является изотропным вектором. Например, e = [0, +].

В пространстве 1R4 существует три типа двумерных плоскостей.

1. Евклидова плоскость R2, на которой существует базис, в котором скалярное произведение любых двух векторов этой плоскости записывается в виде

, где .

К-во Просмотров: 378
Бесплатно скачать Дипломная работа: Дифференциальная геометрия торсов в пространстве 1R4 с псевдоевклидовой касательной плоскостью