Дипломная работа: Дифференциальная геометрия торсов в пространстве 1R4 с псевдоевклидовой касательной плоскостью

В пространстве 1R4 выберем базис

,

где Точка MÎ1R4, имеющая в репере R координаты ( ): M()R.

Определение 2.1. Кривой в пространстве 1R4 называется множество точек этого пространства, координаты которых задаются уравнениями:

(6)

Или в векторном виде . (7)

Определение 2.2. Функция, имеющая непрерывные производные до k-го порядка включительно на отрезке [a,b ], называется k раз дифференцируемой функцией на этом отрезке.

Определение 2.3. Кривая g называется дифференцируемой класса Сk , если функции (6), задающие параметрические уравнения, являются k раз дифференцируемыми функциями.

Пусть кривая g является кривой класса C3. Рассмотрим на дифференцируемой кривой g вектора:


.

Определение 2.4. Точка M, принадлежащая кривой g, называется неособой, если в этой точке вектора , линейно независимы. В противном случае точка M кривой g называется особой.

Определение 2.5. Прямая называется касательной к кривой в точке M, 2-плоскость называется соприкасающейся плоскостью кривой g, 3-плоскость называется соприкасающейся 3-плоскостью кривой g в точке M.

Очевидно, ÌÌ.

Теорема 2.1. Кривая g имеет в каждой точке касательную и притом единственную.

Если r=r(t) - векторное уравнение кривой, то касательная в точке Р, соответствующей значению параметра t, имеет направление вектора r'(t).

Теорема 2.2. Кривая g имеет в каждой точке соприкасающуюся плоскость. При этом соприкасающаяся плоскость либо единственная, либо любая плоскость, содержащая касательную к кривой, является соприкасающейся.

Если r=r(t) – уравнение кривой g, то соприкасающаяся плоскость в точке, соответствующей значению параметра t, параллельна векторам r'(t) и r''(t).

Теорема 2.3. Задание касательной, соприкасающейся плоскости и соприкасающейся 3-плоскости корректно, т.е. не зависит от параметризации кривой.

Для доказательства достаточно перейти к новому параметру и сравнить направляющие вектора.

Определение 2.5. Соприкасающийся флаг – это совокупность, состоящая из точки кривой, касательной к кривой в этой точке, соприкасающейся 2-плоскости к кривой в этой точке и соприкасающейся 3-плоскости к кривой в этой точке. [M, ], M ÌÌÌ.

Соприкасающийся флаг может быть следующих видов.

10. {M, R1, R2, R3}. Например,

20. {M, R1, 1R2, 1R3}. Например,

30. {M, R1, , 1R3}. Например,

К-во Просмотров: 374
Бесплатно скачать Дипломная работа: Дифференциальная геометрия торсов в пространстве 1R4 с псевдоевклидовой касательной плоскостью