Дипломная работа: Дослідження нестандартних методів рішення рівнянь і нерівностей.
Крапка a називається крапкою мінімуму функції f, якщо існує така ε-околиця крапки a, що для будь-якого x із цієї околиці виконується нерівність f (a) ≤ f (x).
Крапки, у яких досягається максимум або мінімум функції, називаються крапками екстремуму.
У крапці екстремуму відбувається зміна характеру монотонності функції. Так, ліворуч від крапки екстремуму функція може зростати, а праворуч - убувати. Відповідно до визначення, крапка екстремуму повинна бути внутрішньою крапкою області визначення.
Якщо для кожного (x ≠ a) виконується нерівність f (x) ≤ f (a) , те крапка a називається крапкою найбільшого значення функції на множині D:
Якщо для кожного (x ≠ b) виконується нерівність f (x) > f (b) , те крапка b називається крапкою найменшого значення функції на множині D.
Крапка найбільшого або найменшого значення функції на множині D може бути екстремумом функції, але не обов'язково їм є.
Крапку найбільшого (найменшого) значення безперервної на відрізку функції варто шукати серед екстремумів цієї функції і її значень на кінцях відрізка.
Рішення рівнянь і нерівностей з використанням властивості монотонності ґрунтується на наступних твердженнях.
1. Нехай f(х) - безперервна й строго монотонна функція на проміжку Т , тоді рівняння f(x) = З, де З - дана константа, може мати не більше одного рішення на проміжку Т.
2. Нехай f(x) і g(х) - безперервні на проміжку T функції, f(x) строго зростає, а g(х) строго убуває на цьому проміжку, тоді рівняння f(х) = =g(х) може мати не більше одного рішення на проміжку Т. Відзначимо, що як проміжок T можуть бути нескінченний проміжок (-?;+?) , проміжки (а;+?), (-?; а), [а;+?), (-?; b], відрізки, інтервали й напівінтервали.
Приклад 2.1.1 Вирішите рівняння
. [28] (1)
Рішення. Очевидно, що х ≤ 0 не може бути рішенням даного рівняння, тому що тоді . Для х > 0 функція безперервна й строго зростає, як добуток двох безперервних позитивних строго зростаючих для цих х функцій f(x) = х і . Виходить, в області х > 0 функція приймає кожне своє значення рівно в одній крапці. Легко бачити, що х = 1 є рішенням даного рівняння, отже, це його єдине рішення.
Відповідь: {1}.
Приклад 2.1.2 Вирішите нерівність
. (2)
Рішення. Кожна з функцій в = 2x , в = 3x , в = 4х безперервна й строго зростаюча на всій осі. Виходить, такий же є й вихідна функція . Легко бачити, що при х = 0 функція приймає значення 3. У силу безперервності й строгої монотонності цієї функції при х > 0 маємо , при х < 0 маємо . Отже, рішеннями даної нерівності є всі х < 0.
Відповідь: (-?; 0).
Приклад 2.1.3 Вирішите рівняння
. (3)
Рішення. Область припустимих значень рівняння (3) є проміжок . На ОПЗ функції й безперервні й строго убувають, отже, безперервна й убуває функція . Тому кожне своє значення функція h(x) приймає тільки в одній крапці. Тому що , те х = 2 є єдиним коренем вихідного рівняння.
Відповідь: {2}.
2.2 Використання обмеженості функції
При рішенні рівнянь і нерівностей властивість обмеженості знизу або зверху функції на деякій множині часто відіграє визначальну роль.
Якщо існує число C таке, що для кожного виконується нерівність f (x) ≤ C, те функція f називається обмеженої зверху на множині D (малюнок 2).
Малюнок 2