Дипломная работа: Дослідження нестандартних методів рішення рівнянь і нерівностей.

Рішення. ОПЗ нерівності (10) є всі х, що задовольняють умові . Ясно, що х = 1 не є рішенням нерівності (10). Для х із проміжку маємо , а . Отже, всі х із проміжку є рішеннями нерівності (10).

Відповідь: .

Приклад 2.5.4 [26] Вирішите нерівність

. (11)

Рішення. ОПЗ нерівності (11) є всі х із проміжку . Розіб'ємо цю множину на два проміжки й .

Для х із проміжку маємо , . Отже, на цьому проміжку, і тому нерівність (11) не має рішень на цьому проміжку.

Нехай х належить проміжку , тоді й . Отже, для таких х, і, виходить, на цьому проміжку нерівність (11) також не має рішень.

Отже, нерівність (11) рішень не має.

Відповідь: O.


3 ДЕЯКІ ШТУЧНІ СПОСОБИ РІШЕННЯ РІВНЯНЬ

Існують і інші нестандартні методи рішення рівнянь і нерівностей, крім використання властивостей функції. Дана глава присвячена додатковим методам рішення.

3.1 Множення рівняння на функцію

Іноді рішення алгебраїчного рівняння істотно полегшується, якщо помножити обидві його частини на деяку функцію - багаточлен від невідомої. При цьому треба пам'ятати, що можливо появу зайвих корінь - корінь багаточлена, на який множили рівняння. Тому треба або множити на багаточлен, що не має корінь, і одержувати рівносильне рівняння, або множити на багаточлен, що має корінь, і тоді кожний з таких корінь треба обов'язково підставити у вихідне рівняння й установити, чи є це число його коренем.

Приклад 3.1.1 Вирішите рівняння

. (1)

Рішення. Помноживши обидві частини рівняння на багаточлен , що не має корінь, одержимо рівняння

, (2)

рівносильне рівнянню (1). Рівняння (2) можна записати у вигляді

. (3)

Ясно, що рівняння (3) не має дійсних корінь, тому й рівняння (1) їх не має.

Відповідь: O.

Приклад 3.1.2 [19] Вирішите рівняння

. (4)

Рішення. Помноживши обидві частини цього рівняння на багаточлен , одержимо рівняння

, (5)

Є наслідком рівняння (4), тому що рівняння (5) має корінь , що не є коренем рівняння (4).

Рівняння (5) є симетричне рівняння четвертого ступеня. Оскільки не є коренем рівняння (5), те, розділивши обидві його частини на й перегрупувавши його члени, одержимо рівняння

(6)

рівносильне рівнянню (5). Позначивши , перепишемо рівняння (6) у вигляді

К-во Просмотров: 404
Бесплатно скачать Дипломная работа: Дослідження нестандартних методів рішення рівнянь і нерівностей.