Дипломная работа: Интеграл Лебега-Стилтьеса

Читатель видит, что единственное (но существенное) отличие данного выше определения от обычного определения интеграла Римана состоит в том, что умножается не на приращение независимой переменной, а на приращение второй функции. Таким образом, интеграл Римана есть частный случай интеграла Стилтьеса, а когда в качестве функции взята сама независимая переменная :

.

2.2 Общие условия существования интеграла Стилтьеса

Установим общие условия существования интеграла Стилтьеса, ограничиваясь, впрочем, предположением, что функция монотонно возрастает.

Отсюда следует, что при теперь все .

Аналогично суммам Дарбу, и здесь целесообразно внести суммы

где и означают, соответственно, нижнюю и верхнюю точные границы функции в -м промежутке . Эти суммы мы будем называть нижней и верхней суммами Дарбу-Стилтьеса.

Прежде всего, ясно, что (при одном и том же разбиении)

причем и служат точными границами для стилтьесовских сумм .

Сами суммы Дарбу-Стилтьеса обладают следующими двумя свойствами:

1-е свойство . Если к имеющимся точкам деления добавить новые точки, то нижняя сумма Дарбу-Стилтьеса может от этого разве лишь возрасти, а верхняя сумма - разве лишь уменьшиться.

2-е свойство . Каждая нижняя сумма Дарбу-Стилтьеса не превосходит каждой верхней суммы, хотя бы и отвечающей другому разбиению промежутка.

Если ввести нижний и верхний интегралы Дарбу-Стилтьеса:

и

то, оказывается, что

.

Наконец, с помощью сумм Дарбу-Стилтьеса легко устанавливается для рассматриваемого случая основной признак существования интеграла Стилтьеса:

Теорема: Для существования интеграла Стилтьеса необходимо и достаточно, чтобы было

Или

,

если под , как обычно, разуметь колебание функции в -м промежутке .

В следующем пункте мы применим этот критерий к установлению важных парных классов функций и , для которых интеграл Стилтьеса существует.

2.3 Классы случаев существования интеграла Стилтьеса

I. Если функция непрерывна, а функция имеет ограниченное изменение, то интеграл Стилтьеса

(5)

существует.

Сначала предположим, что монотонно возрастает: тогда примени критерий предыдущего пункта. По произвольно заданному ввиду равномерной непрерывности функции найдется такое , что в любом промежутке с длиной, меньшей , колебание будет меньше . Пусть теперь промежуток произвольно разбит на части так, что . Тогда все

и

К-во Просмотров: 444
Бесплатно скачать Дипломная работа: Интеграл Лебега-Стилтьеса