Дипломная работа: Интеграл Лебега-Стилтьеса
откуда и следует выполнение условия (4), а стало быть и существование интеграла.
В общем случае, если функция имеет ограниченное изменение, она представима в виде разности двух ограниченных возрастающих функций: . В соответствии с этим преобразуется и сумма Стилтьеса, отвечающая функции :
.
Так как по уже доказанному каждая из сумм и при стремится к конечному пределу, то это справедливо и относительно суммы , что и требовалось доказать.
Можно ослабить условия, налагаемые на функцию , если одновременно усилить требования к функции :
Если функция интегрируема в в смысле Римана, а удовлетворяет условию Липшица:
(6)
то интеграл (5) существует.
Для того чтобы опять иметь возможность применить установленный выше критерий, предположим сначала функцию не только удовлетворяющей условию (6), но и монотонно возрастающей.
Ввиду (6), очевидно, , так что
.
Но последняя сумма при и сама стремится к 0 вследствие интегрируемости (в смысле Римана) функции , а тогда стремится к нулю и первая сумма, что доказывает существование интеграла (5).
В общем случае функции , удовлетворяющей условию Липшица (6), представим в виде разности
Функция , очевидно, удовлетворяет условию Липшица и в то же время монотонно возрастает. То же справедливо и для функции , так как, в силу (6), при
и
В таком случае рассуждение завершается, как и выше.
III. Если функция интегрируема в смысле Римана, а функция представима в виде интеграла с переменным верхним пределом:
(7)
где абсолютно интегрируема, в промежутке , то интеграл (5) существует.
Пусть , так что монотонно возрастает. Если интегрируема в собственном смысле и, следовательно, ограничена: то для
Имеем
Таким образом, в этом случае удовлетворяет условию Липшица, и интеграл существует в силу 2.
Предположим теперь, что интегрируема в несобственном смысле. Ограничимся случаем одной особой точки, скажем . Прежде всего, по произвольно взятому выберем так, чтобы было
(8)