Дипломная работа: Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых третьего и первого порядков
Составим характеристическое уравнение в точке [10, с. 1760-1765]
Отсюда
(2.7)
Следовательно, характеристическое уравнение примет вид:
==0.
,
Характеристическими числами для точки системы (2.1) будут
.
Корни - действительные, различных знаков не зависимо от параметра a. Следовательно, точка - седло.
2. Исследуем точку .
Составим характеристическое уравнение в точке A. Согласно
равенствам (2.7) характеристическое уравнение примет вид:
,
,
то есть
, .
Корни - действительные и одного знака, зависящие от параметра a. Если a<0, то точка - устойчивый узел, если a>0, то точка -неустойчивый узел.
3. Исследуем точку .
Применяя равенства (2.7), составим характеристическое уравнение в точке B:
, .
Корни - действительные и одного знака. Следовательно, точка - седло при любом параметре a .
4. Исследуем точку .
Учитывая выражения (2.7), составим характеристическое уравнение в точке: