Дипломная работа: Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых третьего и первого порядков

Корни - действительные и одного знака. Следовательно, точка N1 (0,0) - устойчивый узел.

2. Исследуем точку N2 (0,).

Учитывая выражение (2.12), составим характеристическое уравнение в точке N2 :

соответственно характеристическими числами будут являться

Корни - действительные и различных знаков. Следовательно, точка N2 (0,)-седло.

Исследуем бесконечно-удаленную часть плоскости в конце оси OY с помощью преобразования [7]

Это преобразование систему (2.1) переводит в систему:

(2.14)

Введем новое время , тогда система (2.14) примет следующий вид:

(2.15)

При z=0, получаем:

(2.16)

Приравнивая второе уравнение системы (2.16) к нулю, получаем

Для исследования состояний равновесий на концах оси OY, необходимо исследовать только точку N3 (0,0).

Составим характеристическое уравнение системы (2.16) в точке N3 :

соответственно характеристическими числами будут являться

Корни - действительные и одного знака. Следовательно, точка N3 (0,0) – устойчивый узел.

Теперь дадим распределение состояний равновесия системы (2.1) в виде таблицы 1.

Таблица 1.

a О А В С
N1 N2 N3
(-∞;0) с У+ с У- У+ с У+
(0;+∞) с У- с У+ У+ с У+

Примечание: через с, у+ , у- обозначены соответственно седло, устойчивый узел, неустойчивый узел.

Положение кривых (1.4), (1.18) и расположение относительно их состояний равновесия при a>0 и a<0 дается соответственно рис. 1(а,б).

К-во Просмотров: 584
Бесплатно скачать Дипломная работа: Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых третьего и первого порядков