Дипломная работа: Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго порядка

Пусть и

(1.27)

Из первого уравнения системы (1.27) получим

Подставляя во второе уравнение системы (1.27), найдем

.


Из соотношений (1.25) при условиях (1.27) получаем, что коэффициенты системы (1.1) определяются следующими формулами:

(1.28)

(1.29)

(1.30)

, , , , (1.31)

Равенства (1.9) - (1.11), (1.19) - (1.22) при условии, что имеют место формулы (1.28) - (1.31), дадут следующие выражения для коэффициентов интегралов (1.3) и (1.13):

a1 (1.32)

a2 (1.33)

a3 (1.34)

s (1.35)

b (1.36)

g (1.37)

d (1.38)

Теорема 1.3 Система (1.1) имеет частные интегралы вида (1.3) и (1.13) с коэффициентами, определенными формулами (1.32) - (1.38), при условии, что коэффициенты системы (1.1) выражаются через параметры по формулам (1.28) - (1.31).

Пусть

(1.39)

Из первого уравнения системы (1.39) найдем

, .

Подставляя во второе уравнение системы (1.39), получим равенство:

(1.40)

Поскольку , то рассмотрим два случая:

, тогда .

К-во Просмотров: 453
Бесплатно скачать Дипломная работа: Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго порядка