Дипломная работа: Комплексные числа избранные задачи

, ,

где и – числа, удовлетворяющие условию . Отсюда . Пусть , тогда , т. е. . Два комплексных числа равны, следовательно, равны их действительные и мнимые части:

Находим два решения этой системы: , . Таким образом,

решениями исходного уравнения являются числа , и

, т. е. , .

Ответ: ; .

Задача 10. Произведите действия с комплексными числами в алгебраической форме:

а) ; б) ; в) .

Решение

а)

б)

в)

Ответ: а) ; б) ; в) .

Задача 11. Произведите следующие действия над комплексными числами:

а) ; б) ; в) ; г) .

Решение

а) ;

б) ;

в) ;

г) .

Ответ: а) ; б) ; в) ; г) .

Задача 12. Запишите комплексное число в виде .

Решение

Имеем

Ответ: .

Задача 13. Найдите значение функции при .

К-во Просмотров: 820
Бесплатно скачать Дипломная работа: Комплексные числа избранные задачи