Дипломная работа: Обработка металла давлением

По отношению к функционалу (2.1) известны три вида вариационных принципа теории пластичности в зависимости от того, через какие переменные величины выражена мощность (потенциальная энергия) деформации [8].

Принцип минимума полной мощности (полной энергии) или принцип возможных изменений деформированного состояния рассматривает мощность (потенциальную энергию) деформируемого тела как функционал произвольной системы скоростей (перемещений), удовлетворяющей кинематическим граничным условиям, и который принимает минимальное значение для системы скоростей (перемещений) фактически реализуемой в деформируемом теле.

Принцип минимума дополнительной работы Кастильяно или принцип возможных изменений напряженного состояния рассматривает дополнительную работу как функционал произвольной системы напряжении, удовлетворяющей уравнениям равновесия внутри тела и на его поверхности, и, который принимает минимальное значение для системы напряжений, фактически реализуемой в деформируемом теле.

В вариационном принципе Рейсснера или принципе возможных изменений напряженного и деформированного состояний мощность (энергия) рассматривается как функционал скоростей и напряжении, и переменные той и другой группы варьируются независимо друг от друга.

Каждому из перечисленных вариационных принципов соответствует определенная форма МКЭ. Принципу минимума полной мощности (полной энергии) соответствует кинематический метод, принципу минимума дополнительной работы - метод напряжении, а вариационному принципу Рейсснера - смешанный метод.

При нагружении тела потенциальная энергия внешних сил изменяется. При этом внешние силы совершают работу. Потенциал внешних сил W численно равен работе этих сил:

(2.3)

где P – поверхностные силы,

u – перемещения,

S – площадь поверхности тела.

В результате изменения потенциальной энергии внешних сил тело деформируется и накапливает потенциальную энергию деформации Q .

(2.4)

где s - напряжения,

е - деформации,

V – объем тела.

Сумма энергии деформации и потенциала внешних сил равна полной потенциальной энергии:

(2.5)

В соответствии с принципом возможных перемещений Лагранжа изменение полной потенциальной энергии на возможных перемещениях равняется нулю:

(2.6)

При этом под возможными перемещениями du понимаются сколь угодно малые отклонения системы от положения равновесия, допускаемые наложенными на систему связями. Из уравнения (2.6)следует, что в состоянии равновесия энергия П имеет стационарное значение. Можно показать, что в положении устойчивого равновесия этот экстремум соответствует минимуму.

С учетом изложенного вариационный принцип Лагранжа для статической задачи имеет вид:

(2.7)

Минимизируя потенциальную энергию по возможным перемещениям, получаем систему линейных уравнений, решая которую определяем значения внешних сил.

2.2 Основные соотношения метода конечных элементов

Простейшим элементом, применяемым для решения осесимметричной задачи механики деформируемого твердого тела, является тороидальный элемент с тремя узлами, расположенными в вершинах треугольного сечения.

Рисунок 2.1 Конечный элемент в задаче осесимметричной деформации.

Вектор перемещений узловых точек конечного элемента имеет вид в случае осесимметричной деформации соответственно:


.

Произвольная точка элемента получает перемещения ur и uz в направлении осей r и z . Поэтому матрица u имеет вид:

К-во Просмотров: 791
Бесплатно скачать Дипломная работа: Обработка металла давлением