Дипломная работа: Обратимые матрицы над кольцом целых чисел
б1) Пусть =0. Тогда из (2.4) выводится равенство
(2.5)
а из (2.5) получим . Распишем (2.5) : . Т.е. однозначно выражается через элемент , которых может быть р штук, и через элементы , , , , . Поэтому количество матриц удовлетворяющих этим условиям (р-1)4 ×р2 ×(р+1).
б2) Если ¹0, .Тогда получим опять равенство (2.5) и из него. Элементов всего р-1 штук. Т.к , то получаем что . Пусть . Умножив равенство (2.5) на , выражая и произведя замену на получим равенство . А т.к. и делаем вывод, что и выражаются через все остальные элементы матрицы. Поэтому количество матриц удовлетворяющих этим условиям
(р-1)5 ×р×(р+1) штук.
б3) Если ¹0, и получаем (р-1)4 ×р2 ×(р+1) матриц удовлетворяющих этим условиям (рассуждения как в
пункте б1)
б4) Если ¹0, , и получаем
(р-1)5 ×р×(р+1) матриц удовлетворяющих этим условиям (рассуждения как в пункте б2)
б5) Пусть ¹0, , и . Из того, что , получаем . Пусть . Тогда преобразовывая (2.4) получаем, что однозначно выражается через и все остальные элементы.
Поэтому количество матриц удовлетворяющих этим условиям (р-1)6 ×р×(р+1) штук.
Таким образом, общее количество матриц удовлетворяющих условию пункта б) подсчитывается по формуле
(р-1)4 ×р×(р+1)×(р2 +2р-1) (получается суммированием формул полученных в пунктах б1-б5).
Значит формула (р-1)3 р5 (р+1) для случая 1) при условии (2.2) верна.
2) Пусть , (количество их р-1), (количество высчитывается по формуле (1.5) ) и (по р штук). Тогда из (2.1) получаем
.
Тогда количество таких матриц вычисляется по формуле
(р-1)3 р4 (р+1) (2.6)
Мы утверждаем, что по этой же формуле вычисляется количество матриц, определитель которых не обращается в нуль, при условии, что , и .
Но при этих условиях не учитываются матрицы вида с неравным нулю определителем, количество которых нужно прибавить. Но сосчитали матрицы вида с определителем обращающимся в нуль, количество которых нужно вычесть.
Докажем, что количество матриц в обоих случаях одинаково:
а) , и . Из (2.1) получаем равенство , , а из того что получаем что, например, элемент однозначно выражается через элемент (р штук) и все остальные элементы. А значит количество матриц с данными условиями (р-1)4 р2 (р+1).
б) , и . Из (2.1) получаем равенство , . А из можем однозначно выразить, например, элемент через элемент (р штук) и все остальные элементы. А значит количество матриц с данными условиями (р-1)4 р2 (р+1).
3) Пусть , , (количество их p-1), (количество высчитывается по формуле (1.5)) и (по р штук).
Тогда количество таких матриц вычисляется по формуле
(р-1)[(р-1)2 р(р+1)]×р×р×р (2.7)
Этими этапами мы перебрали все случаи невырожденных матриц порядка 3. складывая формулы (2.3), (2.6) и (2.7), полученные в этапах 1), 2) и 3) получаем формулу для нахождения количества обратимых матриц порядка 3матриц над полем Zp
(р-1)3 р3 (р+1)(р2 +р+1) (2.8)
3. Общая формула для подсчета обратимых матриц над полем Zp .
Используя алгоритм, описанный в предыдущих пунктах, для выведения формулы подсчета количества обратимых матриц, можем получить частные формулы для матриц произвольных порядков.
Например:
Для матриц порядка 4:
(р-1)4 р6 (р+1)(р2 +р+1)(р3 +р2 +р+1).
Для матриц порядка 5:
(р-1)5 р10 (р+1)(р2 +р+1)(р3 +р2 +р+1)( р4 +р3 +р2 +р+1), и т.д.
Анализируя полученные результаты, можем сделать выводы, что общая формула для получения количества обратимых матриц порядка n над полем Zp выглядит так:
Данную формулу тождественными преобразованиями можно привести к виду:
§3. Обратимые матрицы над кольцом Zn
Из теоремы доказанной в § 1 следует, что для определителей матриц A и B выполняется равенство |A·B|=|A|·|B|.
Для обратимых матриц A и B следует A· B=E.Следовательно |A· B|=|A|· |B|=|E|=1.
Таким образом, получаем: определитель обратимой матрицы является обратимым элементом.