Дипломная работа: Обратимые матрицы над кольцом целых чисел
Министерство образования Российской Федерации
Вятский государственный гуманитарный университет
Математический факультет
Кафедра алгебры и геометрии
Выпускная квалификационная работа
Обратимые матрицы над кольцом Zn
Выполнила:
Студентка V курса
Математического факультета
Сычева О. Г.
Научный руководитель:
д.ф.-м.н., профессор
Вечтомов Е. М.
Рецензент:
к.ф.-м.н., доцент
Чермных В. В.
Допущена к защите в ГАК
???.???????? ???????? ? ?.
? ?
????? ?????????? ????????? ?. ?.
? ?
Киров 2003
Содержание:
Введение………………………………………….…………………….2 стр.
§1 Основные понятия………………………………………………….3 стр.
§2 Обратимые матрицы над полем Zp
п.1 формула для подсчета обратимых матриц порядка 2 ……….10 стр.
п.2 формула для подсчета обратимых матриц порядка 3 ……….11 стр.
п.3 общая формула подсчета обратимых матриц над полем Zp ..16 стр.
§3 Обратимые матрицы над Z n ………………………………………17 стр.
Литература …………………………………………………………….27 стр.
Введение
Теория матриц является одним из основных вопросов линейной алгебры.
Цель данной работы: подсчитать количество обратимых матриц над кольцом вычетов и по возможности получить формулу для их вычисления. Для вычисления количества обратимых матриц воспользовались теорией определителей и полным перебором всех возможных вариантов получения элементов в кольцах вычетов.
Вся работа разбита на два этапа:
В §2 показан метод построения обратимых матриц второго и третьего порядков над полем Zp . В конце параграфа построена гипотеза формулы подсчета количества обратимых матриц n–го порядка над полем Zp .
В §3 приведен алгоритм построения обратимых матриц второго порядка над некоторыми кольцами вычетов (приведены конкретные примеры). В конце параграфа построена гипотеза формулы подсчета количества обратимых матриц второго порядка над кольцом классов вычетов Z n .
§1. Основные определения.
Матрицей называется прямоугольная таблица, заполненная некоторыми математическими объектами. Чаще всего рассматриваются матрицы, заполненные элементами из некоторого поля P .
Элементы матрицы обозначаются одной буквой с двумя индексами, указывающими "адрес" элемента - первый индекс дает номер строки, содержащий элемент, второй - номер столбца. Если матрица имеет m строк и n столбцов, то говорят, что матрица имеет размерность (или - размеров ). Мы будем обозначать матрицы заглавными латинскими буквами, а ее элементы - такими же буквами, но строчными. Таким образом, матрица (размеров ) записывается в форме:
.
Матрица, состоящая из одних нулей, называется нулевой.
Будем обозначать ее 0 .
Матрица, имеющая одно и то же число n строк и столбцов, называется квадратной. Число n называется порядком квадратной матрицы.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--