Дипломная работа: Обратимые матрицы над кольцом целых чисел

6) b=5 Ù c=4.

Получили с данным условием 30 обратимых матриц.

4. ad=2. Возможно 6 случаев (см. предыдущий пункт).

bc=1. Возможные случаи:

1) b=c=1,

2) b=c=5.

Получили с данным условием 12 обратимых матриц.

5. ad=1. Возможно 2 случая (см. предыдущий пункт).

bc=0. Возможные случаи:

1) b=0 Ù c=1,

2) b=0 Ù c=2,

3) b=0 Ù c=3,

4) b=0 Ù c=4,

5) b=0 Ù c=5,

6) b=1 Ù c=0,

7) b=2 Ù c=0,

8) b=3 Ù c=0,

9) b=4 Ù c=0,

10) b=5 Ù c=0,

11) b=2 Ù c=3,

12) b=3 Ù c=2,

13) b=3 Ù c=4,

14) b=4 Ù c=3,

15) b=c=0.

Получили с данным условием 30 обратимых матриц.

6. ad=0. Возможно 15 случаев (см. предыдущий пункт).

bc=5. Возможно 2 случая (см. первый пункт).

Получили с данным условием 30 обратимых матриц.

Таким образом по данной классификации получаем 12+30+30+12+30+30=144 обратимых матриц, определитель которых
равен 1. Аналогичную классификацию можно составить для обратимых матриц с определителем равным 5, и число таких матриц будет также равно 144.

К-во Просмотров: 366
Бесплатно скачать Дипломная работа: Обратимые матрицы над кольцом целых чисел