Дипломная работа: Обратимые матрицы над кольцом целых чисел
В Z 4 обратимыми элементами являются 1и3. Рассмотрим сколько обратимых матриц с определителем равным 1: |A|=ad-bc=1.
Разобьем на следующие варианты:
1. ad=3. Возможные случаи:
1) a=1 Ù d=3,
2) a=3 Ù d=1,
bc=2. Возможные случаи:
1) b=1 Ù c=2,
2) b=2 Ù c=1,
3) b=2 Ù c=3,
4) b=3 Ù c=2.
Получили с данным условием 8 обратимых матриц.
2. ad=2.Возможно 4 случая (см. предыдущий пункт).
bc=1. Возможные случаи:
1) b=c=1,
2) b=c=3.
Получили с данным условием 8 обратимых матриц.
3. ad=1. Возможно 2 случая (см. предыдущий пункт).
bc=0. Возможные случаи:
1) b=0 Ù c=1,
2) b=0 Ù c=2,
3) b=0 Ù c=3,
4) b=1 Ù c=0,
5) b=2 Ù c=0,
6) b=3 Ù c=0,
7) b=c=0,
8) b=c=2.
Получили сданным условием 16 обратимых матриц.
4. ad=0. Возможно 8 случаев (см. предыдущий пункт).
bc=3. Возможно 2 случая (см. первый пункт).