Дипломная работа: Обратимые матрицы над кольцом целых чисел

Таким образом, по данной классификации получаем 8+8+16+16+16=48 обратимых матриц, определитель которых равен 1. Аналогичную классификацию можно составить для обратимых матриц с определителем равным 3, и число таких матриц будет также равно 48.

Следовательно, из 256 квадратных матриц второго порядка над Z4 обратимыми являются 96.

Обратимые матрицы над Z6 .

* 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Всего различных матриц второго порядка над Z6 : 64 =1296.

В Z 6 обратимыми элементами являются 1 и 5. Аналогично рассмотрим, сколько обратимых матриц с определителем равным 1:
|A|=ad-bc=1.

Разобьем на следующие варианты:

1. ad=5. Возможные случаи:

1) a=1 Ù d=5,

2) a=5 Ù d=1,

bc=4. Возможные случаи:

1) b=1 Ù c=4,

2) b=4 Ù c=1,

3) b=2 Ù c=5,

4) b=5 Ù c=2,

5) b=c=2,

6) b=c=4.

Получили с данным условием 12 обратимых матриц.

2. ad=4.Возможно 6 случаев (см. предыдущий пункт).

bc=3. Возможные случаи:

1) b=3 Ù c=1,

2) b=1 Ù c=3,

3) b=3 Ù c=5,

4) b=5 Ù c=3,

5) b=c=3.

Получили с данным условием 30 обратимых матриц.

3. ad=3. Возможно 5 случаев (см. предыдущий пункт).

bc=2. Возможные случаи:

1) b=2 Ù c=1,

2) b=1 Ù c=2,

3) b=2 Ù c=4,

4) b=4 Ù c=2,

К-во Просмотров: 368
Бесплатно скачать Дипломная работа: Обратимые матрицы над кольцом целых чисел