Дипломная работа: Обратимые матрицы над кольцом целых чисел
Таким образом, по данной классификации получаем 8+8+16+16+16=48 обратимых матриц, определитель которых равен 1. Аналогичную классификацию можно составить для обратимых матриц с определителем равным 3, и число таких матриц будет также равно 48.
Следовательно, из 256 квадратных матриц второго порядка над Z4 обратимыми являются 96.
Обратимые матрицы над Z6 .
* | 0 | 1 | 2 | 3 | 4 | 5 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 2 | 3 | 4 | 5 |
2 | 0 | 2 | 4 | 0 | 2 | 4 |
3 | 0 | 3 | 0 | 3 | 0 | 3 |
4 | 0 | 4 | 2 | 0 | 4 | 2 |
5 | 0 | 5 | 4 | 3 | 2 | 1 |
Всего различных матриц второго порядка над Z6 : 64 =1296.
В Z 6 обратимыми элементами являются 1 и 5. Аналогично рассмотрим, сколько обратимых матриц с определителем равным 1:
|A|=ad-bc=1.
Разобьем на следующие варианты:
1. ad=5. Возможные случаи:
1) a=1 Ù d=5,
2) a=5 Ù d=1,
bc=4. Возможные случаи:
1) b=1 Ù c=4,
2) b=4 Ù c=1,
3) b=2 Ù c=5,
4) b=5 Ù c=2,
5) b=c=2,
6) b=c=4.
Получили с данным условием 12 обратимых матриц.
2. ad=4.Возможно 6 случаев (см. предыдущий пункт).
bc=3. Возможные случаи:
1) b=3 Ù c=1,
2) b=1 Ù c=3,
3) b=3 Ù c=5,
4) b=5 Ù c=3,
5) b=c=3.
Получили с данным условием 30 обратимых матриц.
3. ad=3. Возможно 5 случаев (см. предыдущий пункт).
bc=2. Возможные случаи:
1) b=2 Ù c=1,
2) b=1 Ù c=2,
3) b=2 Ù c=4,
4) b=4 Ù c=2,