Дипломная работа: Показательно-степенные уравнения и неравенства
2) , .
3) , , - четное, - нечетное. Это является решением.
4) или , , , , .
Проверка: , - верно.
Но не является корнем!
Выражение (-1,5)52,5 , которое получается при проверке не имеет смысла, т.к. степень отрицательно числа имеет смысл только для целых показателей. Равенство = только для . Значит, отрицательное число можно возводить только в степень с целым показателем.
Ответ: -4, -2, -1.
Пример №12
Решение
ОДЗ: . Значит 0,1 и -1 отпадают.
и все решения содержатся в уравнении.
, ,
Ответ: 5.
Пример №13
Решение
1) , , . Это решение .
2) , , .
3) отрицательных значений не имеет.
При или все решения в уравнении , и .
При , - верно. .
Ответ: -1, 2, 3, 4.
Пример №14
Решение
ОДЗ: