Дипломная работа: Похідна Фреше та похідна Гато
де при . Але тоді з рівностей (3) та (4) випливає при , що неможливо.
Таким чином, відображення не диференційовне за Фреше в точці .
Приклад 3. Нехай і , де ядро неперервне в квадраті , – функція двох змінних, визначена в полосі і неперервна в цій області. Тоді – функція, визначена на і яка приймає значення в цьому ж просторі.
Припустимо, що функція не тільки неперервна, але й має частинну похідну, рівномірно неперервну в полосі .
Тоді – диференційовна функція. А саме, для довільної функції маємо
За теоремою Лагранжа,
,
де
. Далі, маємо
.
При , тобто при рівномірно на , також рівномірно на , оскільки функція, неперервна в замкненій обмеженій області , рівномірно неперервна в цій області. Тому
,
де
і .
При цьому
і тому при .
Таким чином, диференційовна за Фреше і
.
Приклад 4. Якщо і границя існує, то диференційовне в точці і . Дійсно, в цьому випадку , де при , і диференційованість очевидна.
Множина відображень, визначених в околі точки , які приймають значення в просторі Y та диференційовних в точці , є лінійною системою , а також оператор диференціювання є лінійним, тобто
,
або, інакше,
.
Далі, з рівності
випливає, що функція , диференційовна в точці , неперервна в цій точці.
Обернене твердження не вірне (приклад 2).