Дипломная работа: Похідна Фреше та похідна Гато

Теорема доведена.

1.3.2 Похідні по підпростору

Поняття, проміжне між похідною Фреше і похідною за напрямком, є похідна по підпростору. Нехай дано відображення і – підпростір . Якщо для існує неперервний лінійний оператор такий, що для будь-якого , яке задовольняє умові ,

,

то відображення f називається диференційовним в точці x по підпростору X0 і позначається . Якщо X – пряма сума підпросторів X1 та X2 і похідні відображення f по підпросторам X1 та X2 в точці існують, то вони називаються частинними похідними відображення f в цій точці і позначаються і .

Лема. Якщо і відображення має в околі точці частинні похідні і , неперервні в цій точці, то відображення f диференційовне в точці за Фреше і

, .

Доведення. Розглянемо

,

так як при і

Лема доведена.

Має місце обернене до леми твердження, причому

.

Поняття частинних похідних і попередні результати безпосередньо узагальнюються на випадок, коли X – пряма сума будь-якого скінченого числа підпросторів.

Зауваження. Оскільки в силу відповідності простори і є ізоморфними, а з метриками, які породжені нормами

є ізометричними, то все вище наведене для частинних похідних переноситься на відображення виду: де .

Нехай тепер і, як завжди, відкрите, так що де , . Якщо “координатні функції” диференційовні в точці , то диференційовне в цій точці і . Дійсно,

,

Причому

, якщо .

Ці результати розповсюджуються на випадок відображень, які приймають значення в декартовому добутку будь-якого скінченого числа просторів.


РОЗДІЛ 2

ПОХІДНІ ФРЕШЕ ТА ГАТО В ПРИКЛАДАХ І ЗАДАЧАХ

1. Довести, що похідна Фреше диференційовного в точці відображення визначається єдиним чином.

Доведення

Нехай , – дві похідні Фреше в точці x, тоді

, де (1)

, де (2)

Розглянемо різницю (2)-(1):

К-во Просмотров: 480
Бесплатно скачать Дипломная работа: Похідна Фреше та похідна Гато