Дипломная работа: Похідна Фреше та похідна Гато

Теорема 1 доведена.

Теорема 2. Якщо відображення неперервне в і диференційовне в кожній точці цієї множини за будь-яким напрямком , а похідна неперервна по і рівномірно відносно неперервна по , то

диференційовне в по Фреше і .

Доведення. Покажемо, що в умовах теореми лінійно залежить від h. Фіксуючи точку , при довільних достатньо малих h, kÎX і довільному розглянемо функцію

двох дійсних змінних t і t. Використовуючи умови теореми і наслідок 2 з леми 1, можна показати в достатньо малому околі точки (0,0) функція має неперервні частинні похідні

, (8)

Вводимо функцію

, a,bÎR

В силу теореми про диференціювання композиції функцій маємо

(9)

Але , звідки з урахуванням рівностей (8) та (9) отримуємо

Оскільки довільне, то , і лінійність доведено.

Залишається довести, що

.

Покладемо


.

неперервна на [0,1) і має на [0,1) неперервну похідну

.

За теоремою Лагранжа, , тобто

Для довільного, але фіксованого обираємо так, щоб і

Тоді знаходимо

Оскільки лінійний і неперервний (за умовою) відносно h оператор, то , де . Далі, в силу неперервності по x рівномірно відносно h, знаходимо

,

якщо . Тому

К-во Просмотров: 473
Бесплатно скачать Дипломная работа: Похідна Фреше та похідна Гато