Дипломная работа: Похідна Фреше та похідна Гато
,
звідки й випливає наведене твердження.
Слід зазначити, що відображення та , які мають область визначення в одному і тому просторі, діють в різні простори, а саме , а . Якщо диференційовне всюди на G, то , .
1.2 Основні теореми
Теорема 1 (про диференційовність композиції відображень). Нехай – лінійні нормовані простори й задані відображення , де , – відкрита множина; , де , – відкрита множина. Якщо множина не порожня , відображення диференційовне в точці , а диференційовне в точці , то складне відображення диференційовне в точці і
.
Доведення. Насамперед, якщо достатньо мале, то в силу відкритості множин та й неперервності відображень і відповідно в точках та , точки і не вийдуть за границі множин та . Далі маємо
.
Оскільки диференційовне в точці , то
,
де , якщо . В свою чергу,
де , якщо . Тому
Вираз є лінійним оператором по , і залишається довести, що , якщо .
Маємо
.
Перший доданок справа прямує до нуля, оскільки , якщо . Прямування до нуля другого доданка можна довести так. Оскільки диференційовне в точці , то , якщо . Тому для будь-якого знайдеться , таке, що , якщо . В свою чергу, в силу неперервності в точці для даного знайдеться таке, що , якщо . Далі, оскільки диференційовне в точці , то знайдеться таке, що , якщо . Нехай . При маємо
,
і оскільки довільне, то це означає, що , якщо .
Теорему доведено.
Приклад 5. Розглянемо відображення , диференційоване на відкритій множині , і точки такі, що . Тоді функція , визначена рівністю
,
диференційовна на і .
Приклад 6. Нехай відображення диференційоване на і – лінійний неперервний оператор. Тоді – відображення, диференційовне на , і .
Наступна теорема є аналогом теореми Лагранжа про скінченні прирости дійсних функцій дійсних аргументів.
Теорема 2 (про скінченні прирости). Нехай відображення диференційовне на і відрізок цілком входить до . Тоді
.
Доведення. Розглянемо відображення , де . Це відображення неперервне на як композиція неперервних відображень та , і в силу теореми 1 диференційовне всередині , при цьому